8 research outputs found

    Confocal laser endomicroscopy as predictive biomarker of clinical and endoscopic efficacy of vedolizumab in ulcerative colitis: The DETECT study

    No full text
    International audienceAIMS: In patients with ulcerative colitis (UC), no biomarker is available to help the physician to choose the most suitable biotherapy. The primary objective of this pilot study was to assess the feasibility of identification of α4ÎČ7- and TNF-expressing cells, to predict the response to vedolizumab using confocal laser endoscopy (CLE). METHODS: Patients with moderate-to-severe UC, naĂŻve of biotherapy, received vedolizumab. Clinical evaluation was performed at each infusion. Endoscopic evaluation was performed before inclusion and at week 22. Fresh colonic biopsies were stained using FITC-labelled vedolizumab and Alexa fluor-labelled adalimumab and ex vivo dual-band CLE images were acquired. Blood samples were collected to measure trough concentrations of vedolizumab and to determine absolute counts of T and B cells subpopulations, NK cells and monocytes. RESULTS: Nineteen patients were enrolled in the study and received at least one dose of vedolizumab. Clinical remission and endoscopic improvement were observed in 58% of whom 5 patients (45%) had an endoscopic subscore of 0. In terms of clinical response and remission, endoscopic improvement and histologic response, FITC-conjugated vedolizumab staining tended to be higher in responder patients compared to non-responders at week 22. A threshold value of 6 positive FITC-vedolizumab staining areas detected by CLE seemed informative to discriminate the responders and non-responders. The results were similar in terms of clinical remission and endoscopic improvement with a sensitivity of 78% and a specificity of 85% (p = 0.05). Trough concentrations and blood immune cells were not associated with responses to vedolizumab. CONCLUSION: This pilot study demonstrate that dual-band CLE is feasible to detect α4ÎČ7- and TNF-expressing cells. Positive α4ÎČ7 staining seems to be associated with clinical and endoscopic remission in UC patients treated by anti-α4ÎČ7-integrin, subject to validation by larger-scale studies. Clinical-trial.gov: NCT02878083

    Cell-surface C-type lectin-like receptor CLEC-1 dampens dendritic cell activation and downstream Th17 responses

    No full text
    International audienceDendritic cells (DCs) represent essential antigen-presenting cells that are critical for linking innate and adaptive immunity, and influencing T-cell responses. Among pattern recognition receptors, DCs express C-type lectin receptors triggered by both exogenous and endogenous ligands, therefore dictating pathogen response, and also shaping T-cell immunity. We previously described in rat, the expression of the orphan C-type lectin-like receptor-1 (CLEC-1) by DCs and demonstrated in vitro its inhibitory role in downstream T helper 17 (Th17) activation. In this study, we examined the expression and functionality of CLEC-1 in human DCs, and show a cell-surface expression on the CD16- subpopulation of blood DCs and on monocyte-derived DCs (moDCs). CLEC-1 expression on moDCs is downregulated by inflammatory stimuli and enhanced by transforming growth factor ÎČ. Moreover, we demonstrate that CLEC-1 is a functional receptor on human moDCs and that although not modulating the spleen tyrosine kinase-dependent canonical nuclear factor-ÎșB pathway, represses subsequent Th17 responses. Interestingly, a decreased expression of CLEC1A in human lung transplants is predictive of the development of chronic rejection and is associated with a higher level of interleukin 17A (IL17A). Importantly, using CLEC-1-deficient rats, we showed that disruption of CLEC-1 signaling led to an enhanced Il12p40 subunit expression in DCs, and to an exacerbation of downstream in vitro and in vivo CD4+ Th1 and Th17 responses. Collectively, our results establish a role for CLEC-1 as an inhibitory receptor in DCs able to dampen activation and downstream effector Th responses. As a cell-surface receptor, CLEC-1 may represent a useful therapeutic target for modulating T-cell immune responses in a clinical setting

    Development of a cross-platform biomarker signature to detect renal transplant tolerance in humans.

    No full text
    Identifying transplant recipients in whom immunological tolerance is established or is developing would allow an individually tailored approach to their posttransplantation management. In this study, we aimed to develop reliable and reproducible in vitro assays capable of detecting tolerance in renal transplant recipients. Several biomarkers and bioassays were screened on a training set that included 11 operationally tolerant renal transplant recipients, recipient groups following different immunosuppressive regimes, recipients undergoing chronic rejection, and healthy controls. Highly predictive assays were repeated on an independent test set that included 24 tolerant renal transplant recipients. Tolerant patients displayed an expansion of peripheral blood B and NK lymphocytes, fewer activated CD4+ T cells, a lack of donor-specific antibodies, donor-specific hyporesponsiveness of CD4+ T cells, and a high ratio of forkhead box P3 to alpha-1,2-mannosidase gene expression. Microarray analysis further revealed in tolerant recipients a bias toward differential expression of B cell-related genes and their associated molecular pathways. By combining these indices of tolerance as a cross-platform biomarker signature, we were able to identify tolerant recipients in both the training set and the test set. This study provides an immunological profile of the tolerant state that, with further validation, should inform and shape drug-weaning protocols in renal transplant recipients

    Regulatory cell therapy in kidney transplantation (The ONE Study): a harmonised design and analysis of seven non-randomised, single-arm, phase 1/2A trials

    Get PDF
    Background Use of cell-based medicinal products (CBMPs) represents a state-of-the-art approach for reducing general immunosuppression in organ transplantation. We tested multiple regulatory CBMPs in kidney transplant trials to establish the safety of regulatory CBMPs when combined with reduced immunosuppressive treatment. Methods The ONE Study consisted of seven investigator-led, single-arm trials done internationally at eight hospitals in France, Germany, Italy, the UK, and the USA (60 week follow-up). Included patients were living-donor kidney transplant recipients aged 18 years and older. The reference group trial (RGT) was a standard-of-care group given basiliximab, tapered steroids, mycophenolate mofetil, and tacrolimus. Six non-randomised phase 1/2A cell therapy group (CTG) trials were pooled and analysed, in which patients received one of six CBMPs containing regulatory T cells, dendritic cells, or macrophages; patient selection and immunosuppression mirrored the RGT, except basiliximab induction was substituted with CBMPs and mycophenolate mofetil tapering was allowed. None of the trials were randomised and none of the individuals involved were masked. The primary endpoint was biopsy-confirmed acute rejection (BCAR) within 60 weeks after transplantation; adverse event coding was centralised. The RTG and CTG trials are registered with ClinicalTrials.gov, NCT01656135, NCT02252055, NCT02085629, NCT02244801, NCT02371434, NCT02129881, and NCT02091232. Findings The seven trials took place between Dec 11, 2012, and Nov 14, 2018. Of 782 patients assessed for eligibility, 130 (17%) patients were enrolled and 104 were treated and included in the analysis. The 66 patients who were treated in the RGT were 73% male and had a median age of 47 years. The 38 patients who were treated across six CTG trials were 71% male and had a median age of 45 years. Standard-of-care immunosuppression in the recipients in the RGT resulted in a 12% BCAR rate (expected range 3·2–18·0). The overall BCAR rate for the six parallel CTG trials was 16%. 15 (40%) patients given CBMPs were successfully weaned from mycophenolate mofetil and maintained on tacrolimus monotherapy. Combined adverse event data and BCAR episodes from all six CTG trials revealed no safety concerns when compared with the RGT. Fewer episodes of infections were registered in CTG trials versus the RGT. Interpretation Regulatory cell therapy is achievable and safe in living-donor kidney transplant recipients, and is associated with fewer infectious complications, but similar rejection rates in the first year. Therefore, immune cell therapy is a potentially useful therapeutic approach in recipients of kidney transplant to minimise the burden of general immunosuppression. Funding The 7th EU Framework Programme
    corecore