100 research outputs found
A Deep Learning Algorithm for Prediction of Age-Related Eye Disease Study Severity Scale for Age-Related Macular Degeneration from Color Fundus Photography
Acknowledgments The authors thank the Age-Related Eye Disease Study participants and the Age-Related Eye Disease Study Research Group for their valuable contribution to this research, and all study participants for contributing to the Cooperative Health Research in the Region of Augsburg study.Peer reviewedPublisher PD
Chances and challenges of machine learning based disease classification in genetic association studies illustrated on age-related macular degeneration
Imaging technology and machine learning algorithms for disease classification set the stage for high-throughput phenotyping and promising new avenues for genome-wide association studies (GWAS). Despite emerging algorithms, there has been no successful application in GWAS so far. We establish machine learning-based phenotyping in genetic association analysis as misclassification problem. To evaluate chances and challenges, we performed a GWAS based on automatically classified age-related macular degeneration (AMD) in UK Biobank (images from 135,500 eyes; 68,400 persons). We quantified misclassification of automatically derived AMD in internal validation data (4,001 eyes; 2,013 persons) and developed a maximum likelihood approach (MLA) to account for it when estimating genetic association. We demonstrate that our MLA guards against bias and artifacts in simulation studies. By combining a GWAS on automatically derived AMD and our MLA in UK Biobank data, we were able to dissect true association (ARMS2/HTRA1,CFH) from artifacts (nearHERC2) and identified eye color as associated with the misclassification. On this example, we provide a proof-of-concept that a GWAS using machine learning-derived disease classification yields relevant results and that misclassification needs to be considered in analysis. These findings generalize to other phenotypes and emphasize the utility of genetic data for understanding misclassification structure of machine learning algorithms
Photostress Recovery Time as a Potential Predictive Biomarker for Age-Related Macular Degeneration
Abstract
Purpose: The purpose of this study was to assess recovery time following photostress and its association with age-related macular degeneration (AMD) cross-sectionally and longitudinally in an elderly population-based cohort.
Methods: We analyzed photostress recovery time (PRT) and AMD in >1800 AugUR study participants aged 70+ years. On color fundus images from baseline and 3-year follow-up, presence of AMD was graded manually (Three Continent AMD Consortium Severity Scale). Visual acuity (VA) was assessed via Early Treatment Diabetic Retinopathy Study (ETDRS) charts. After a 30-second bleaching of the macular region via direct ophthalmoscope, PRT was measured as the seconds to regain VA.
Results: First, we analyzed 1208 AugUR participants cross-sectionally (288 with early AMD, and 78 with late AMD). Prolonged PRT was associated with early and late AMD versus no AMD (median PRT = 119.5, 198.0 versus 80.0 seconds, respectively; logistic regression odds ratio [OR] = 1.109â1.165 per 10 seconds, P values < 0.0001). Sensitivity analyses using alternative models or restricting to participants after cataract surgery revealed similar ORs. Second, the association was confirmed in an independent cross-sectional AugUR sample (n = 486). Third, in longitudinal analysis of 233 AugUR participants without AMD, prolonged PRT was associated with incident AMD ascertained 3 years later (follow-up time = 3.2 ± 0.2 years, OR = 1.112â1.162 per 10 seconds, P < 0.05). Overall, we demonstrate a significant association of prolonged PRT with AMD cross-sectionally and longitudinally in elderly individuals.
Conclusions: Prolonged PRT might capture retinal function impairment after cell damage before early AMD is visible via color fundus imaging.
Translational Relevance: Our results suggest PRT as quantitative predictive biomarker for incident AMD, making it potentially worthwhile also for clinical care
Effects of genetic variants in the TSPO gene on protein structure and stability
The 18 kDa translocator protein (TSPO) is an evolutionary conserved cholesterol binding protein localized in the outer mitochondrial membrane. Expression of TSPO is upregulated in activated microglia in various neuroinflammatory, neurodegenerative, and neoplastic disorders. Therefore, TSPO radioligands are used as biomarkers in positron emission tomography (PET) studies. In particular, a common A147T polymorphism in the TSPO gene affects binding of several high affinity TSPO radioligands. Given the relevance of TSPO as a diagnostic biomarker in disease processes, we systematically searched for mutations in the human TSPO gene by a wide array of evolution and structure based bioinformatics tools and identified potentially deleterious missense mutations. The two most frequently observed missense mutations A147T and R162H were further analysed in structural models of human wildtype and mutant TSPO proteins. The effects of missense mutations were studied on the atomic level using molecular dynamics simulations. To analyse putative effects of A147T and R162H variants on protein stability we established primary dermal fibroblast cultures from wt and homozygous A147T and R162H donors. Stability of endogenous TSPO protein, which is abundantly expressed in fibroblasts, was studied using cycloheximide protein degradation assay. Our data show that the A147T mutation significantly alters the flexibility and stability of the mutant protein. Furthermore both A147T and R162H mutations decreased the half-life of the mutant proteins by about 25 percent, which could in part explain its effect on reduced pregnenolone production and susceptibility to neuropsychiatric disorders. The present study is the first comprehensive bioinformatic analysis of genetic variants in the TSPO gene, thereby extending the knowledge about the clinical relevance of TSPO nsSNPs
Features of age-related macular degeneration in the general adults and their dependency on age, sex, and smoking : Results from the German KORA study
Acknowledgments We thank all study participants for contributing to the KORA study.Peer reviewedPublisher PD
Changes in healthcare seeking and lifestyle in old aged individuals during COVID-19 lockdown in Germany: the population-based AugUR study
Background
Containment measures in the COVID-19 pandemic protected individuals at high risk, particularly individuals at old age, but little is known about how these measures affected health-related behavior of old aged individuals. We aimed to investigate the impact of the spring 2020 lockdown in Germany on healthcare-seeking and health-related lifestyle in the old aged and to identify susceptible subgroups.
Methods
We conducted a follow-up survey among the pre-pandemically well-characterized participants of our AugUR cohort study, residents in/around Regensburg aged 70+ years and relatively mobile. A self-completion questionnaire on current behavior, perceived changes, and SARS-Cov-2 infection was mailed in May 2020, shortly before contact restrictions ended. Pre-pandemic lifestyle and medical conditions were derived from previous study center visits.
Results
Among 1850 survey participants (73â98âyears; net-response 89%), 74% were at increased risk for severe COVID-19 according to medical conditions; four participants reported SARS-CoV-2 infection (0.2%). Participants reported changes in behavior: 29% refrained from medical appointments, 14% increased TV consumption, 26% reported less physical activity, but no systematic increase of smoking or alcohol consumption. When comparing during- and pre-lockdown reports of lifestyle within participant, we found the same pattern as for the reported perceived changes. Women and the more educated were more susceptible to changes. Worse QOL was perceived by 38%.
Conclusions
Our data suggest that the spring 2020 lockdown did not affect the lifestyle of a majority of the mobile old aged individuals, but the substantial proportions with decreased physical activity and healthcare-seeking are markers of collateral damage
Mutations in the Genes for Interphotoreceptor Matrix Proteoglycans, IMPG1 and IMPG2, in Patients with Vitelliform Macular Lesions
A significant portion of patients diagnosed with vitelliform macular dystrophy (VMD) do not carry causative mutations in the classic VMD genes BEST1 or PRPH2. We therefore performed a mutational screen in a cohort of 106 BEST1/PRPH2-negative VMD patients in two genes encoding secreted interphotoreceptor matrix proteoglycans-1 and -2 (IMPG1 and IMPG2). We identified two novel mutations in IMPG1 in two simplex VMD cases with disease onset in their early childhood, a heterozygous p.(Leu238Pro) missense mutation and a homozygous c.807 + 5G > A splice site mutation. The latter induced partial skipping of exon 7 of IMPG1 in an in vitro splicing assay. Furthermore, we found heterozygous mutations including three stop [p.(Glu226*), p.(Ser522*), p.(Gln856*)] and five missense mutations [p.(Ala243Pro), p.(Gly1008Asp), p.(Phe1016Ser), p.(Tyr1042Cys), p.(Cys1077Phe)] in the IMPG2 gene, one of them, p.(Cys1077Phe), previously associated with VMD. Asymptomatic carriers of the p.(Ala243Pro) and p.(Cys1077Phe) mutations show subtle foveal irregularities that could characterize a subclinical stage of disease. Taken together, our results provide further evidence for an involvement of dominant and recessive mutations in IMPG1 and IMPG2 in VMD pathology. There is a remarkable similarity in the clinical appearance of mutation carriers, presenting with bilateral, central, dome-shaped foveal accumulation of yellowish material with preserved integrity of the retinal pigment epithelium (RPE). Clinical symptoms tend to be more severe for IMPG1 mutations
Self-report of chronic diseases in old-aged individuals: extent of agreement with general practitioner medical records in the German AugUR study
Background
To estimate prevalence and incidence of diseases through self-reports in observational studies, it is important to understand the accuracy of participant reports. We aimed to quantify the agreement of self-reported and general practitioner-reported diseases in an old-aged population and to identify socio-demographic determinants of agreement.
Methods
This analysis was conducted as part of the AugUR study (n=2449), a prospective population-based cohort study in individuals aged 70â95 years, including 2321 participants with consent to contact physicians. Self-reported chronic diseases of participants were compared with medical data provided by their respective general practitioners (n=589, response rate=25.4%). We derived overall agreement, over-reporting/under-reporting, and Cohenâs kappa and used logistic regression to evaluate the dependency of agreement on participantsâ sociodemographic characteristics.
Results
Among the 589 participants (53.1% women), 96.9% reported at least one of the evaluated chronic diseases. Overall agreement was >80% for hypertension, diabetes, myocardial infarction, stroke, cancer, asthma, bronchitis/chronic obstructive pulmonary disease and rheumatoid arthritis, but lower for heart failure, kidney disease and arthrosis. Cohenâs kappa was highest for diabetes and cancer and lowest for heart failure, musculoskeletal, kidney and lung diseases. Sex was the primary determinant of agreement on stroke, kidney disease, cancer and rheumatoid arthritis. Agreement for myocardial infarction and stroke was most compromised by older age and for cancer by lower educational level.
Conclusion
Self-reports may be an effective tool to assess diabetes and cancer in observational studies in the old and very old aged. In contrast, self-reports on heart failure, musculoskeletal, kidney or lung diseases may be substantially imprecise
Genetic Risk Score Analysis Supports a Joint View of Two Classification Systems for Age-Related Macular Degeneration
Purpose: The purpose of this study was to evaluate the utility of combining the Clinical Classification (CC) and the Three Continent age-related macular degeneration (AMD) Consortium Severity Scale (3CACSS) for classification of AMD.
Methods: In two independent cross-sectional datasets of our population-based AugUR study (Altersbezogene Untersuchungen zur Gesundheit der UniversitÀt Regensburg), we graded AMD via color fundus images applying two established classification systems (CC and 3CACSS). We calculated the genetic risk score (GRS) across 50 previously identified variants for late AMD, its association via logistic regression, and area under the curve (AUC) for each AMD stage.
Results: We analyzed 2188 persons aged 70 to 95 years. When comparing the two classification systems, we found a distinct pattern: CC âage-related changesâ and CC âearly AMDâ distinguished individuals with 3CACSS âno AMDâ; 3CACSS âmild/moderate/severe early AMDâ stages, and distinguished CC âintermediate AMDâ. This suggested a 7-step scale combining the 2 systems: (i) âno AMDâ, (ii) âage-related changesâ, (iii) âvery early AMDâ, (i.e. CC âearlyâ), (iv) âmild early AMDâ, (v) âmoderate early AMDâ, (vi) âsevere early AMDâ, and (vii) âlate AMDâ. GRS association and diagnostic accuracy increased stepwise by increased AMD severity in the 7-step scale and by increased restriction of controls (e.g. for CC âno AMD without age-related changesâ: AUC = 55.1%, 95% confidence interval [CI] = 51.6, 58.6, AUC = 62.3%, 95% CI = 59.1, 65.6, AUC = 63.8%, 95% CI = 59.3, 68.3, AUC = 78.1%, 95% CI = 73.6, 82.5, AUC = 82.2%, 95% CI = 78.4, 86.0, and AUC = 79.2%, 95% CI = 75.4, 83.0). A stepwise increase was also observed by increased drusen size and area.
Conclusions: The utility of a 7-step scale is supported by our clinical and GRS data. This harmonization and full data integration provides an immediate simplification over using either CC or 3CACSS and helps to sharpen the control group
In-Depth Characterisation of Retinal Pigment Epithelium (RPE) Cells Derived from Human Induced Pluripotent Stem Cells (hiPSC)
Induced pluripotent stem cell (iPSC)-derived retinal pigment epithelium (RPE) has widely been appreciated as a promising tool to model human ocular disease emanating from primary RPE pathology. Here, we describe the successful reprogramming of adult human dermal fibroblasts to iPSCs and their differentiation to pure expandable RPE cells with structural and functional features characteristic for native RPE. Fibroblast cultures were established from skin biopsy material and subsequently reprogrammed following polycistronic lentiviral transduction with OCT4, SOX2, KLF4 and L-Myc. Fibroblast-derived iPSCs showed typical morphology, chromosomal integrity and a distinctive stem cell marker profile. Subsequent differentiation resulted in expandable pigmented hexagonal RPE cells. The cells revealed stable RNA expression of mature RPE markers RPE65, RLBP and BEST1. Immunolabelling verified localisation of BEST1 at the basolateral plasma membrane, and scanning electron microscopy showed typical microvilli at the apical side of iPSC-derived RPE cells. Transepithelial resistance was maintained at high levels during cell culture indicating functional formation of tight junctions. Secretion capacity was demonstrated for VEGF-A. Feeding of porcine photoreceptor outer segments revealed the proper ability of these cells for phagocytosis. IPSC-derived RPE cells largely maintained these properties after cryopreservation. Together, our study underlines that adult dermal fibroblasts can serve as a valuable resource for iPSC-derived RPE with characteristics highly reminiscent of true RPE cells. This will allow its broad application to establish cellular models for RPE-related human diseases
- âŠ