30 research outputs found
Anthracene-based thiol-ene networks with thermo-degradable and photo-reversible properties
Reversible networks based on an alkenefunctionalized dimer of 9-anthracenemethanol were synthesized by photoinitiated radical thiol ene polyaddition, using either a poly(dimethylsiloxane-co-propylmercaptomethylsiloxane) or a novel aliphatic trithiol synthesized from 1,2,4trivinylcyclohexane in a simple two-step procedure. The obtained networks were analyzed using differential scanning calorimetry, dynamic mechanical analysis, polarization microscopy, X-ray diffraction, and (photo)rheology. The two types of networks showed weak endothermic transitions between 50 and 60 degrees C, which proved to originate either from melting of a crystalline anthracene-dimer phase (trithiol network) or from a liquid crystalline phase (PDMS network) based on X-ray diffraction and polarization microscopy. Using rheology, both types of networks were shown to cleanly decompose into multifunctional anthracene monomers at temperatures above 180 degrees C. Irradiation of these anthracene monomers resulted in the formation of networks having similar physical properties as the original materials
An Inside Perspective on Magma Intrusion: Quantifying 3D Displacement and Strain in Laboratory Experiments by Dynamic X-Ray Computed Tomography
Magma intrusions grow to their final geometries by deforming the Earth's crust internally and by displacing the Earth's surface. Interpreting the related displacements in terms of intrusion geometry is key to forecasting a volcanic eruption. While scaled laboratory models enable us to study the relationships between surface displacement and intrusion geometry, past approaches entailed limitations regarding imaging of the laboratory model interior or simplicity of the simulated crustal rheology. Here we apply cutting-edge medical wide beam X-ray Computed Tomography (CT) to quantify in 4D the deformation induced in laboratory models by an intrusion of a magma analog (golden syrup) into a rheologically-complex granular host rock analog (sand and plaster). We extract the surface deformation and we quantify the strain field of the entire experimental volume in 3D over time by using Digital Volume Correlation (DVC). By varying the strength and height of the host material, and intrusion velocity, we observe how intrusions of contrasting geometries grow, and induce contrasting strain field characteristics and surface deformation in 4D. The novel application of CT and DVC reveals that distributed strain accommodation and mixed-mode (opening and shear) fracturing dominates in low-cohesion material overburden, and leads to the growth of thick cryptodomes or cup-shaped intrusions. More localized strain accommodation and opening-mode fracturing dominates in high-cohesion material overburden, and leads to the growth of cone sheets or thin dikes. The results demonstrate how the combination of CT and DVC can greatly enhance the utility of optically non-transparent crustal rock analogs in obtaining insights into shallow crustal deformation processes. This unprecedented perspective on the spatio-temporal interaction of intrusion growth coupled with host material deformation provides a conceptual framework that can be tested by field observations at eroded volcanic systems and by the ever increasing spatial and temporal resolution of geodetic data at active volcanoes
Substituent effect on the thermophysical properties and thermal dissociation behaviour of 9-substituted anthracene derivatives
The chemical structure and location of substituents on anthracene derivatives influence the electron balance of the aromatic system, thus determining the wavelengths at which light is absorbed, which results in the photochemically induced dimerization or monomerization. Here, the thermal dissociation kinetics of 7 photodimers of 9-substituted anthracene derivatives are studied using a combination of spectroscopic and calorimetric techniques in the condensed state and compared to scarce literature data on thermal dissociation of other anthracene derivatives. The length and chemical structure of the substituent chains have a clear impact on the melting temperatures of the anthracene derivatives and corresponding photodimers. The crystallinity of the photodimers and monomers in turn influences the thermal dissociation kinetics. The thermal dissociation behaviour and previously published photochemistry data are related to the electronic effects of the substituents by means of the Hammett parameters. Stronger electron-withdrawing effects result in larger red shifts of the maximum wavelength lambda(max) for the photodimerization of the anthracene derivatives. It is also shown that for the studied substitutions on the 9-position of anthracene, the higher the magnitude of the electronic effect - both electron-donating and electron-withdrawing - the faster the thermal dissociation kinetics and thus the lower the thermal stability. The strong electronic effects of the substituents on the thermal and photochemical reactivity of the anthracene derivatives and their photodimers allow tuning of the thermal or photochemical responsiveness, e.g. for polymer networks
Coupling the Microscopic Healing Behaviour of Coatings to the Thermoreversible Diels-Alder Network Formation
While thermally reversible polymer network coatings based on the Diels-Alder reaction are widely studied, the mechanisms responsible for the heating-mediated healing of damage is still not well understood. The combination of microscopic evaluation techniques and fundamental insights for the thermoreversible network formation in the bulk and coating shed light on the mechanisms behind the damage healing events. The thermomechanical properties of thermoset and elastomer coatings, crosslinked by the furan-maleimide Diels-Alder cycloaddition reaction, were studied in bulk and compared to the thermal behaviour applied as coatings onto aluminium substrates. The damage sealing of thermoset (Tg = 79 °C) and elastomer (Tg = −49 °C) coatings were studied using nano-lithography and atomic force microscopy (AFM). The sealing event is studied and modelled at multiple temperatures and correlated to the changes in the network structure and corresponding thermomechanical properties
A novel approach for the closure of large damage in self-healing elastomers using magnetic particles
status: publishe
Self-Healing and High Interfacial Strength in Multi-Material Soft Pneumatic Robots via Reversible Diels–Alder Bonds
In new-generation soft robots, the actuation performance can be increased by using multiple materials in the actuator designs. However, the lifetime of these actuators is often limited due to failure that occurs at the weak multi-material interfaces that rely almost entirely on physical interactions and where stress concentration appears during actuation. This paper proposes to develop soft pneumatic actuators out of multiple Diels–Alder polymers that can generate strong covalent bonds at the multi-material interface by means of a heat–cool cycle. Through tensile testing it is proven that high interfacial strength can be obtained between two merged Diels–Alder polymers. This merging principle is exploited in the manufacturing of multi-material bending soft pneumatic actuators in which interfaces are no longer the weakest links. The applicability of the actuators is illustrated by their operation in a soft hand and a soft gripper demonstrator. In addition, the use of Diels–Alder polymers incorporates healability in bending actuators. It is experimentally illustrated that full recovery of severe damage can be obtained by subjecting the multi-material actuators to a healing cycle
Mechanical, physical and chemical characterisation of mycelium-based composites with different types of lignocellulosic substrates.
The current physical goods economy produces materials by extracting finite valuable resources without taking their end of the life and environmental impact into account. Mycelium-based materials offer an alternative fabrication paradigm, based on the growth of materials rather than on extraction. Agricultural residue fibres are inoculated with fungal mycelium, which form an interwoven three-dimensional filamentous network binding the feedstock into a lightweight material. The mycelium-based material is heat-killed after the growing process. In this paper, we investigate the production process, the mechanical, physical and chemical properties of mycelium-based composites made with different types of lignocellulosic reinforcement fibres combined with a white rot fungus, Trametes versicolor. This is the first study reporting the dry density, the Young's modulus, the compressive stiffness, the stress-strain curves, the thermal conductivity, the water absorption rate and a FTIR analyse of mycelium-based composites by making use of a fully disclosed protocol with T. versicolor and five different type of fibres (hemp, flax, flax waste, softwood, straw) and fibre processings (loose, chopped, dust, pre-compressed and tow). The thermal conductivity and water absorption coefficient of the mycelium composites with flax, hemp, and straw have an overall good insulation behaviour in all the aspects compared to conventional materials such as rock wool, glass wool and extruded polystyrene. The conducted tests reveal that the mechanical performance of the mycelium-based composites depends more on the fibre processing (loose, chopped, pre-compressed, and tow), and size than on the chemical composition of the fibres. These experimental results show that mycelium-composites can fulfil the requirements of thermal insulation and have the potential to replace fosile-based composites. The methology used to evaluate the suitability and selection of organic waste-streams proved to be effective for the mycelium-material manufacturing applications
Magnetic Self-Healing Composites: Synthesis and Applications
Magnetic composites and self-healing materials have been drawing much attention in their respective fields of application. Magnetic fillers enable changes in the material properties of objects, in the shapes and structures of objects, and ultimately in the motion and actuation of objects in response to the application of an external field. Self-healing materials possess the ability to repair incurred damage and consequently recover the functional properties during healing. The combination of these two unique features results in important advances in both fields. First, the self-healing ability enables the recovery of the magnetic properties of magnetic composites and structures to extend their service lifetimes in applications such as robotics and biomedicine. Second, magnetic (nano)particles offer many opportunities to improve the healing performance of the resulting self-healing magnetic composites. Magnetic fillers are used for the remote activation of thermal healing through inductive heating and for the closure of large damage by applying an alternating or constant external magnetic field, respectively. Furthermore, hard magnetic particles can be used to permanently magnetize self-healing composites to autonomously re-join severed parts. This paper reviews the synthesis, processing and manufacturing of magnetic self-healing composites for applications in health, robotic actuation, flexible electronics, and many more.info:eu-repo/semantics/publishe
Humins Blending in Thermoreversible Diels–Alder Networks for Stiffness Tuning and Enhanced Healing Performance for Soft Robotics
Humins waste valorization is considered to be an essential pathway to improve the economic viability of many biorefinery processes and further promote their circularity by avoiding waste formation. In this research, the incorporation of humins in a Diels–Alder (DA) polymer network based on furan-maleimide thermoreversible crosslinks was studied. A considerable enhancement of the healing efficiency was observed by just healing for 1 h at 60 °C at the expense of a reduction of the material mechanical properties, while the unfilled material showed no healing under the same conditions. Nevertheless, the thermal healing step favored the irreversible humins polycondensation, thus strengthening the material while keeping the enhanced healing performance. Our hypothesis states a synergistic healing mechanism based on humins flowing throughout the damage, followed by thermal humins crosslinking during the healing trigger, together with DA thermoreversible bonds recombination. A multi-material soft robotic gripper was manufactured out of the proposed material, showing not only improved recovery of the functional performance upon healing but also stiffness-tunable features by means of humins thermal crosslinking. For the first time, both damage healing and zone reinforcement for further damage prevention are achieved in a single intrinsic self-healing system
Supramolecular self-healing sensor fiber composites for damage detection in piezoresistive electronic skin for soft robots
Self-healing materials can prolong the lifetime of structures and products by enabling the repairing of damage. However, detecting the damage and the progress of the healing process remains an important issue. In this study, self-healing, piezoresistive strain sensor fibers (ShSFs) are used for detecting strain deformation and damage in a self-healing elastomeric matrix. The ShSFs were embedded in the self-healing matrix for the development of self-healing sensor fiber composites (ShSFC) with elongation at break values of up to 100%. A quadruple hydrogen-bonded supramolecular elastomer was used as a matrix material. The ShSFCs exhibited a reproducible and monotonic response. The ShSFCs were investigated for use as sensorized electronic skin on 3D-printed soft robotic modules, such as bending actuators. Depending on the bending actuator module, the electronic skin was loaded under either compression (pneumatic-based module) or tension (tendon-based module). In both configurations, the ShSFs could be successfully used as deformation sensors, and in addition, detect the presence of damage based on the sensor signal drift. The sensor under tension showed better recovery of the signal after healing, and smaller signal relaxation. Even with the complete severing of the fiber, the piezoresistive properties returned after the healing, but in that case, thermal heat treatment was required. With their resilient response and self-healing properties, the supramolecular fiber composites can be used for the next generation of soft robotic modules