7 research outputs found

    Measuring Kinematic Response to Perturbed Locomotion in Young Adults

    Get PDF
    Daily life activities often require humans to perform locomotion in challenging scenarios. In this context, this study aimed at investigating the effects induced by anterior-posterior (AP) and medio-lateral (ML) perturbations on walking. Through this aim, the experimental protocol involved 12 participants who performed three tasks on a treadmill consisting of one unperturbed and two perturbed walking tests. Inertial measurement units were used to gather lower limb kinematics. Parameters related to joint angles, as the range of motion (ROM) and its variability (CoV), as well as the inter-joint coordination in terms of continuous relative phase (CRP) were computed. The AP perturbation seemed to be more challenging causing differences with respect to normal walking in both the variability of the ROM and the CRP amplitude and variability. As ML, only the ankle showed different behavior in terms of joint angle and CRP variability. In both tasks, a shortening of the stance was found. The findings should be considered when implementing perturbed rehabilitative protocols for falling reduction.Peer Reviewe

    Sex-specific tuning of modular muscle activation patterns for locomotion in young and older adults

    Get PDF
    This article was supported by the German Research Foundation (DFG) and the Open Access Publication Fund of Humboldt-Universität zu Berlin.There is increasing evidence that including sex as a biological variable is of crucial importance to promote rigorous, repeatable and reproducible science. In spite of this, the body of literature that accounts for the sex of participants in human locomotion studies is small and often produces controversial results. Here, we investigated the modular organization of muscle activation patterns for human locomotion using the concept of muscle synergies with a double purpose: i) uncover possible sex-specific characteristics of motor control and ii) assess whether these are maintained in older age. We recorded electromyographic activities from 13 ipsilateral muscles of the lower limb in young and older adults of both sexes walking (young and old) and running (young) on a treadmill. The data set obtained from the 215 participants was elaborated through non-negative matrix factorization to extract the time-independent (i.e., motor modules) and time-dependent (i.e., motor primitives) coefficients of muscle synergies. We found sparse sex-specific modulations of motor control. Motor modules showed a different contribution of hip extensors, knee extensors and foot dorsiflexors in various synergies. Motor primitives were wider (i.e., lasted longer) in males in the propulsion synergy for walking (but only in young and not in older adults) and in the weight acceptance synergy for running. Moreover, the complexity of motor primitives was similar in younger adults of both sexes, but lower in older females as compared to older males. In essence, our results revealed the existence of small but defined sex-specific differences in the way humans control locomotion and that these are not entirely maintained in older age.Peer Reviewe

    The Stepping Threshold Test for Reactive Balance : Validation of Two Observer-Based Evaluation Strategies to Assess Stepping Behavior in Fall-Prone Older Adults

    Get PDF
    Introduction: Measurement of reactive balance is critical for fall prevention but is severely underrepresented in the clinical setting due to the lack of valid assessments. The Stepping Threshold Test (STT) is a newly developed instrumented test for reactive balance on a movable platform, however, it has not yet been validated for fall-prone older adults. Furthermore, different schemes of observer-based evaluation seem possible. The aim of this study was to investigate validity with respect to fall risk, interpretability, and feasibility of the STT using two different evaluation strategies.Methods: This study involved 71 fall-prone older adults (aged ≥ 65) who underwent progressively increasing perturbations in four directions for the STT. Single and multiple-step thresholds for each perturbation direction were determined via two observer-based evaluation schemes, which are the 1) consideration of all steps (all-step-count evaluation, ACE) and 2) consideration of those steps that extend the base of support in the direction of perturbation (direction-sensitive evaluation, DSE). Established balance measures including global (Brief Balance Evaluations Systems Test, BriefBEST), proactive (Timed Up and Go, TUG), and static balance (8-level balance scale, 8LBS), as well as fear of falling (Short Falls Efficacy Scale-International, FES-I) and fall occurrence in the past year, served as reference measurements.Results: The sum scores of STT correlated moderately with the BriefBEST (ACE: r = 0.413; DSE: r = 0.388) and TUG (ACE: r = -0.379; DSE: r = -0.435) and low with the 8LBS (ACE: r = 0.173; DSE: r = 0.246) and Short FES-I (ACE: r = -0.108; DSE: r = -0.104). The sum scores did not distinguish between fallers and non-fallers. No floor/ceiling effects occurred for the STT sum score, but these effects occurred for specific STT thresholds for both ACE (mean floor effect = 13.04%, SD = 19.35%; mean ceiling effect = 4.29%, SD = 7.75%) and DSE (mean floor effect = 7.86%, SD = 15.23%; mean ceiling effect = 21.07%, SD = 26.08). No severe adverse events occurred.Discussion: Correlations between the STT and other balance tests were in the expected magnitude, indicating convergent validity. However, the STT could not distinguish between fallers and non-fallers, referring to a need for further studies and prospective surveys of falls to validate the STT. Current results did not allow a definitive judgment on the advantage of using ACE or DSE. Study results represented a step toward a reactive balance assessment application in a clinical setting.publishe

    Neuromotor Dynamics of Human Locomotion in Challenging Settings

    No full text
    Is the control of movement less stable when we walk or run in challenging settings? Intuitively, one might answer that it is, given that challenging locomotion externally (e.g., rough terrain) or internally (e.g., age-related impairments) makes our movements more unstable. Here, we investigated how young and old humans synergistically activate muscles during locomotion when different perturbation levels are introduced. Of these control signals, called muscle synergies, we analyzed the local stability and the complexity (or irregularity) over time. Surprisingly, we found that perturbations force the central nervous system to produce muscle activation patterns that are less unstable and less complex. These outcomes show that robust locomotion control in challenging settings is achieved by producing less complex control signals that are more stable over time, whereas easier tasks allow for more unstable and irregular control.publishe
    corecore