17,917 research outputs found

    Collinear Four-Wave Mixing of Two-Component Matter Waves

    Full text link
    We demonstrate atomic four-wave mixing of two-component matter waves in a collinear geometry. Starting from a single-species Bose-Einstein condensate, seed and pump modes are prepared through microwave state transfer and state-selective Kapitza-Dirac diffraction. Four-wave mixing then populates the initially empty output modes. Simulations based on a coupled-mode expansion of the Gross-Pitaevskii equation are in very good agreement with the experimental data. We show that four-wave mixing can play an important role in studies of bosonic mixtures in optical lattices. Moreover our system should be of interest in the context of quantum atom optics.Comment: 4 pages, 4 figures; revised version, essentially as publishe

    Optically mediated nonlinear quantum optomechanics

    Full text link
    We consider theoretically the optomechanical interaction of several mechanical modes with a single quantized cavity field mode for linear and quadratic coupling. We focus specifically on situations where the optical dissipation is the dominant source of damping, in which case the optical field can be adiabatically eliminated, resulting in effective multimode interactions between the mechanical modes. In the case of linear coupling, the coherent contribution to the interaction can be exploited e.g. in quantum state swapping protocols, while the incoherent part leads to significant modifications of cold damping or amplification from the single-mode situation. Quadratic coupling can result in a wealth of possible effective interactions including the analogs of second-harmonic generation and four-wave mixing in nonlinear optics, with specific forms depending sensitively on the sign of the coupling. The cavity-mediated mechanical interaction of two modes is investigated in two limiting cases, the resolved sideband and the Doppler regime. As an illustrative application of the formal analysis we discuss in some detail a two-mode system where a Bose-Einstein condensate is optomechanically linearly coupled to the moving end mirror of a Fabry-P\'erot cavity.Comment: 11 pages, 8 figure

    Wide-bandwidth, tunable, multiple-pulse-width optical delays using slow light in cesium vapor

    Get PDF
    We demonstrate an all-optical delay line in hot cesium vapor that tunably delays 275 ps input pulses up to 6.8 ns and 740 input ps pulses up to 59 ns (group index of approximately 200) with little pulse distortion. The delay is made tunable with a fast reconfiguration time (hundreds of ns) by optically pumping out of the atomic ground states.Comment: 4 pages, 6 figure

    Quantum channels in nonlinear optical processes

    Get PDF
    Quantum electrodynamics furnishes a new type of representation for the characterisation of nonlinear optical processes. The treatment elicits the detailed role and interplay of specific quantum channels, information that is not afforded by other methods. Following an illustrative application to the case of Rayleigh scattering, the method is applied to second and third harmonic generation. Derivations are given of parameters that quantify the various quantum channels and their interferences; the results are illustrated graphically. With given examples, it is shown in some systems that optical nonlinearity owes its origin to an isolated channel, or a small group of channels. © 2009 World Scientific Publishing Company

    On causality, apparent 'superluminality' and reshaping in barrier penetration

    Get PDF
    We consider tunnelling of a non-relativistic particle across a potential barrier. It is shown that the barrier acts as an effective beam splitter which builds up the transmitted pulse from the copies of the initial envelope shifted in the coordinate space backwards relative to the free propagation. Although along each pathway causality is explicitly obeyed, in special cases reshaping can result an overall reduction of the initial envelope, accompanied by an arbitrary coordinate shift. In the case of a high barrier the delay amplitude distribution (DAD) mimics a Dirac δ\delta-function, the transmission amplitude is superoscillatory for finite momenta and tunnelling leads to an accurate advancement of the (reduced) initial envelope by the barrier width. In the case of a wide barrier, initial envelope is accurately translated into the complex coordinate plane. The complex shift, given by the first moment of the DAD, accounts for both the displacement of the maximum of the transmitted probability density and the increase in its velocity. It is argued that analysing apparent 'superluminality' in terms of spacial displacements helps avoid contradiction associated with time parameters such as the phase time

    Bright squeezed vacuum in a nonlinear interferometer: frequency/temporal Schmidt-mode description

    Full text link
    Control over the spectral properties of the bright squeezed vacuum (BSV), a highly multimode non-classical macroscopic state of light that can be generated through high-gain parametric down conversion, is crucial for many applications. In particular, in several recent experiments BSV is generated in a strongly pumped SU(1,1) interferometer to achieve phase supersensitivity, perform broadband homodyne detection, or tailor the frequency spectrum of squeezed light. In this work, we present an analytical approach to the theoretical description of BSV in the frequency domain based on the Bloch-Messiah reduction and the Schmidt-mode formalism. As a special case we consider a strongly pumped SU(1,1) interferometer. We show that different moments of the radiation at its output depend on the phase, dispersion and the parametric gain in a nontrivial way, thereby providing additional insights on the capabilities of nonlinear interferometers. In particular, a dramatic change in the spectrum occurs as the parametric gain increases

    Resolving velocity space dynamics in continuum gyrokinetics

    Full text link
    Many plasmas of interest to the astrophysical and fusion communities are weakly collisional. In such plasmas, small scales can develop in the distribution of particle velocities, potentially affecting observable quantities such as turbulent fluxes. Consequently, it is necessary to monitor velocity space resolution in gyrokinetic simulations. In this paper, we present a set of computationally efficient diagnostics for measuring velocity space resolution in gyrokinetic simulations and apply them to a range of plasma physics phenomena using the continuum gyrokinetic code GS2. For the cases considered here, it is found that the use of a collisionality at or below experimental values allows for the resolution of plasma dynamics with relatively few velocity space grid points. Additionally, we describe implementation of an adaptive collision frequency which can be used to improve velocity space resolution in the collisionless regime, where results are expected to be independent of collision frequency.Comment: 20 pages, 11 figures, submitted to Phys. Plasma

    A symmetry analyser for non-destructive Bell state detection using EIT

    Full text link
    We describe a method to project photonic two-qubit states onto the symmetric and antisymmetric subspaces of their Hilbert space. This device utilizes an ancillary coherent state, together with a weak cross-Kerr non-linearity, generated, for example, by electromagnetically induced transparency. The symmetry analyzer is non-destructive, and works for small values of the cross-Kerr coupling. Furthermore, this device can be used to construct a non-destructive Bell state detector.Comment: Final published for

    Witnessed entanglement and the geometric measure of quantum discord

    Full text link
    We establish relations between geometric quantum discord and entanglement quantifiers obtained by means of optimal witness operators. In particular, we prove a relation between negativity and geometric discord in the Hilbert-Schmidt norm, which is slightly different from a previous conjectured one [Phys. Rev. A 84, 052110 (2011)].We also show that, redefining the geometric discord with the trace norm, better bounds can be obtained. We illustrate our results numerically.Comment: 8 pages + 3 figures. Revised version with erratum for PRA 86, 024302 (2012). Simplified proof that discord is bounded by entanglement in any nor

    Limitations to the determination of a Laguerre-Gauss spectrum via projective, phase-flattening measurement

    Get PDF
    One of the most widely used techniques for measuring the orbital angular momentum components of a light beam is to flatten the spiral phase front of a mode, in order to couple it to a single-mode optical fiber. This method, however, suffers from an efficiency that depends on the orbital angular momentum of the initial mode and on the presence of higher order radial modes. The reason is that once the phase has been flattened, the field retains its ringed intensity pattern and is therefore a nontrivial superposition of purely radial modes, of which only the fundamental one couples to a single mode optical fiber. In this paper, we study the efficiency of this technique both theoretically and experimentally. We find that even for low values of the OAM, a large amount of light can fall outside the fundamental mode of the fiber, and we quantify the losses as functions of the waist of the coupling beam of the orbital angular momentum and radial indices. Our results can be used as a tool to remove the efficiency bias where fair-sampling loopholes are not a concern. However, we hope that our study will encourage the development of better detection methods of the orbital angular momentum content of a beam of light.Comment: 5 pages, 4 figure
    • …
    corecore