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We consider tunneling of a nonrelativistic particle across a potential barrier. It is shown that the barrier acts
as an effective beam splitter which builds up the transmitted pulse from the copies of the initial envelope shifted
in the coordinate space backward relative to the free propagation. Although along each pathway causality is
explicitly obeyed, in special cases reshaping can result an overall reduction of the initial envelope, accompanied
by an arbitrary coordinate shift. In the case of a high barrier the delay amplitude distribution (DAD) mimics a
Dirac δ function, the transmission amplitude is superoscillatory for finite momenta and tunneling leads to an
accurate advancement of the (reduced) initial envelope by the barrier width. In the case of a wide barrier, initial
envelope is accurately translated into the complex coordinate plane. The complex shift, given by the first moment
of the DAD, accounts for both the displacement of the maximum of the transmitted probability density and the
increase in its velocity. It is argued that analyzing apparent “superluminality” in terms of spacial displacements
helps avoid contradiction associated with time parameters such as the phase time.
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I. INTRODUCTION

In 1932 MacColl was first to notice that a wave packet
representing a tunneling particle may emerge from the barrier
in a manner that suggests that “there is no appreciable delay
in the transmission of the packet through the barrier” [1].
The implication that the particle may have crossed the barrier
region with a speed greater than the speed of light c has given
the effect the name of “apparent superluminality.” A parameter
commonly used to estimate the time such a particle spends in
the barrier region is the phase time τphase, essentially the energy
derivative of the phase of the transmission amplitude (see,
for example, Refs. [2,3]). In accordance with the above, τphase
becomes independent of the barrier width d as d → ∞, a fact
often referred to as the Hartman effect [4]. Besides tunneling,
a similar behavior was predicted and observed for a variety
of systems, including propagation of a photon through a slab
of “fast light” material, where it has an even more surprising
aspect, since a free photon already moves at the maximal
possible speed c (for a recent review, see Ref. [5]). Although it
has long been agreed that the the causality is not violated since
reshaping [6] destroys causal relationship between the incident
and the transmitted peaks, exact mechanism of reshaping,
the role of the causality principle and the nature of time
parameters used to quantify the effect remain open to further
discussion [7]. With this task in mind, we return here to the case
of nonrelativistic tunneling across a potential barrier, originally
considered in Ref. [1]. In Ref. [8] we analyzed a particular
type of a beam splitter in which the transmitted pulse, reshaped
through interference, appeared reduced and shifted in the
coordinate variable relative to free propagation. Postselection
of the particle in a particular spin state allowed one to advance
or delay the particle, or to make the shift complex valued.
With the initial shape of the pulse preserved, the delay
amplitude distribution (DAD), which determines the choice
between available pathways, mimicked a Dirac δ-function,
while the effective transmission coefficient exhibited
supersocillations [9,10] in the momentum range of interest.

The purpose of this article is to demonstrate that a similar
mechanism, albeit without the flexibility of choosing the delay
at will, is realised in nonrelativistic tunneling across a potential
barrier. In Sec. II we change from the momentum to the
coordinate representation and show that the causality principle
limits the spectrum of delays available to a transmitted particle.
In Sec. III we show that, due to the oscillatory nature of the
complex valued DAD, causality alone cannot be used to predict
the position of the transmitted pulse. In Sec. V we analyze
advancement in tunneling across a high rectangular barrier.
In Sec. VI we show that in the semiclassical limit of a wide
barrier initial envelope experiences a complex coordinate shift.
In Sec. VII we link the imaginary part of the shift to the increase
in the mean velocity of the transmitted particle. In Sec. VIII
we explore the analogy between tunneling and the model of
Ref. [8] in order to describe the reshaping mechanism. In
Sec. IX we introduce a complex delay time similar to the
complex traversal time [11] and briefly discuss the wisdom of
such an introduction. Section X contains our conclusions.

II. DELAYS AND CAUSALITY IN ONE-DIMENSIONAL
SCATTERING

Consider, in a nonrelativistic limit, a one-dimensional wave
packet with a mean momentum p0 incident from the left on
a short-range potential W (x). Its transmitted part is given by
(we put to unity h̄ and the particle’s mass µ)

#T (x,t) =
∫

T (p)A(p − p0) exp(ipx − ip2t/2)dp, (1)

where A(p − p0) is the momentum distribution of the initial
pulse, peaked at p = p0, and T (p) is the transmission
amplitude. Consider also the state #0(x,t) obtained by free
(W = 0) propagation of the same initial pulse,

#0(x,t) =
∫

A(p − p0) exp(ipx − ip2t/2)dp. (2)
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It is convenient to extract the phase factor associated with p0
thus defining functions GT (x,t,p0) and G0(x,t,p0) as

GT,0(x,t,p0) = exp
(
−ip0x + ip2

0t/2
)
#T ,0(x,t). (3)

Note that G0(x,t,p0) represents the envelope of the freely
propagating state (2), whereas for #T (x,t), whose mean
momentum may have been changed in transmission, it is not,
strictly speaking, so. Following [12] we rewrite the integral
(1) as a convolution in the coordinate space, thus obtaining for
GT and G0 in Eq. (3)

GT (x,t,p0) = T (p0)
∫ ∞

−∞
η(x ′,p0)G0(x − x ′,t,p0)dx ′. (4)

In Eq. (4) η(x) is the delay amplitude distribution (DAD),
related to the Fourier transform of the transmission amplitude
T (p)

ξ (x) = (2π )−1
∫ ∞

−∞
T (p) exp(ipx)dp, (5)

as

η(x,p0) = [T (p0)]−1 exp(−ip0x)ξ (x), (6)

and normalized to unity
∫ 0

−∞
η(x,p0)dx = 1. (7)

Equation (4), which is exact, demonstrates that at any given
time t the transmitted pulse GT (x,t,p0) builds up from freely
propagating envelopes shifted in space by x ′ (delayed for x ′ <
0 and advanced for x ′ > 0) and weighted by η(x ′,p0). The
support of the η(x,p0) [i.e., all x for which η(x,p0) %= 0] forms
a continuum spectrum of available delays.

The causality principle (CP) ensures analyticity of the
transmission amplitude in the complex p plane [13] and can be
used to obtain information about the spectrum. In particular,
for a barrier potential which does not support bound states
and, therefore, has no poles in the upper half of the complex p
plane, ξ (x) must vanish for x > 0, and the spectrum contains
no positive shifts (negative delays) [14]. Accordingly, we can
write

η(x,p0) = δ(x) + η̃(x,p0), η̃(x,p0) ≡ 0, for x > 0,

(8)

where the singular term [which arises because T (p) → 1
for |x| → ∞] corresponds to free propagation, while the
smooth part η̃(x,p0), which describes scattering, vanishes as
W → 0. Conversely, the CP ensures that for a barrier the
Fourier transform of T (p) contains only plane waves with
non-negative frequencies, x ! 0,

T (p) =
∫ ∞

0
ξ (−x) exp(ipx)dx. (9)

Finally, for a barrier we can rewrite Eq. (4) in an equivalent
form

GT (x,t,p0) =
∫ ∞

x

η(x − x ′,p0)G0(x ′,t,p0)dx ′, (10)

which best serves to demonstrate that the CP prevents transfer
of information from the tail of the incident pulse to the

front of the transmitted one. Namely should the envelopes
of two freely propagating wave packets coincide for x > x0,
G0

1(x,t,p0) = G0
2(x,t,p0), then GT

1 (x,t,p0) and GT
2 (x,t,p0)

will also coincide in the same range, making it impossible for
an observer to distinguish between the two transmitted pulses
until their tails arrive at the detector.

III. COUNTERINTUITIVE ADVANCEMENTS,
SUPEROSCILLATIONS AND QUASI-DIRAC

DISTRIBUTIONS

Equation (4), which is our main result so far, is worth a
brief discussion. While the overall factor T (p0) represents
a reduction in the magnitude of the transmitted pulse, its
shape is determined by the DAD η(x,p0) and results from
the interference between the subenvelopes G0(x − x ′,t,p0)
with different spacial shifts which, because a free wave packet
spreads, depend on time. The causality principle restricts the
spectrum of available shifts and ensures that in the absence
of bound states decomposition (4) does not contain advanced
terms. This is a quantum analog of the classical result that
a particle is sped up when passing over a region where
W (x) < 0, e.g., over a potential well, and is delayed compared
to free propagation whenever W (x) > 0, e.g., when passing
over a potential barrier. In the classical limit, η(x,p0) becomes
highly oscillatory and has a stationary region around x = xcl ,
corresponding to the classical displacement of a particle
crossing W (x) relative to the free one. Thus only one shift
xcl and one shape G0(x − xcl,t,p0) are selected from those
available in Eq. (4). Since η(x,p0) must vanish for x > 0, one
can only have xcl " 0. In this way causality ensures that a
classical particle passing over a barrier can only be delayed.

Yet when η(x,p0) has no real stationary points, interference
effects play the dominant role and the CP alone cannot predict
the final shape or even the location of the transmitted pulse.
Indeed, should T (p), for whatever reason, have a simple
exponential form,

T (p) = B exp(−iαp), B = const, α > 0, (11)

equation (6) would yield

η(x,p0) = δ(x − α), (12)

and the transmitted envelope would be a reduced accurate copy
of the freely propagating one, advanced by the distance α,

GT (x,t,p0) = BG0(x − α,t,p0). (13)

Naively, one may conclude that this situation cannot be
realized for a barrier potential, given that the CP requires,
on one hand, that the Fourier spectrum contain no negative
frequencies similar to that in Eq. (11) and, on the other
hand, that η(x,p0) vanish for all x > 0 in contradiction to
(12). However, to achieve the advancement in Eq. (13),
it is only necessary that Eqs. (11) and (12) be satisfied
approximately [8]. Thus, T (p) has to mimic exp(−iαp) only
in a limited region of p containing all initial momenta.
Equivalently, η(x,p0) has to mimic δ(x − α) only for initial
wave packets sufficiently broad in the coordinate space. The
former is possible, since it is well known [9] that a sum of
exponentials, whose frequencies lie within a given interval,
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can locally reproduce a “superoscillatory” exponential with a
frequency outside this interval. For the latter it is sufficient
that the DAD η(x,p0) have several of its moments outside
its region of support and equal to those of δ(x − α) [8],∫ 0
−∞ xnη(x)dx ≈ αn, n = 0,1,2 . . . K . This is possible since

the DAD is an alternating distribution rather than a non-
negative probabilistic one [15]. If so, the kernel η(x − x ′)
termed in Ref. [8] a quasi-Dirac distribution, would act like
a spacial shift by a distance α on a polynomial of an order
" K or, more generally, one any function whose Taylor series
can be truncated after the first K terms. Next we look for
evidence of such a behavior in tunneling across a rectangular
barrier.

IV. GAUSSIAN WAVE PACKETS

Although the results of Sec. I apply, in principle, to initial
pulses of arbitrary shape, in the following we will consider
Gaussian wave packets with positive momenta incident on the
barrier from the left. Such a wave packet has a spacial width σ
and a mean momentum p0 > 0 and is centered around some
x = 0 at t = 0 so that its momentum distribution A(p − p0)
and the freely propagating envelope in Eq. (4) are given by

A(p − p0) = σ 1/2/(2π )3/4 exp[−(p − p0)2σ 2/4] (14)

and

G0(x,t,p0) =
[
2σ 2/πσ 4

t

]1/4 exp
[
−(x − p0t)2/σ 2

t

]
, (15)

where σ 2
t ≡ (σ 2 + 2it) is a complex valued width which

takes into account the effects of spreading. The coordinate
probability density for the wave packet in Eq. (15) has a
Gaussian shape

ρ0(x,t) ≡ |G0(x,t,p0)|2 = (2/π )1/2

(σ 2 + 4t2/σ 2)1/2

× exp{−2[x − p0t]2/(σ 2 + 4t2/σ 2)}. (16)

V. TUNNELLING ACROSS A HIGH RECTANGULAR
BARRIER

Consider tunneling of a Gaussian wave packet (15) across
a rectangular barrier of a width d and a height W , W (x) =
W for x0 " x " x0 + d, x0 > 0, and zero otherwise. The
transmission amplitude independent of the barrier position x0
is given by

T (p,W ) = 4pk exp(−ipd)
(k + p)2 exp(−ikd) − (k − p)2 exp(ikd)

, (17)

where k = (p2 − 2W )1/2. It is readily seen that T (p) is single
valued in the complex p plane and has no poles in its upper
half. The DAD η(x,p0 = 0) shown in Fig. 1 is real because
of the symmetry T (−p) = T ∗(p) and vanishes for x > 0 as
required by causality. It is convenient to rewrite T (p) as a
geometric progression

T (p,W ) = 4pk exp[−i(p−k)d]
(p + k)2

∞∑

n=0

(p − k)2n

(p + k)2n
exp(−i2nkd),

(18)
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FIG. 1. Regular part of the DAD in Eq. (8) for a rectangular barrier
with β ≡

√
2Wd = 20 and p0 = 0 obtained by numerical integration

of Eq. (5) with T (p) given by Eq. (17).

where we choose the principal branch of the square root
(p2 − 2W )1/2, i.e., k > 0 for p2 > 2W . Next we fix d and the
Gaussian momentum distribution of the incident wave packet
A(p − p0) and increase the barrier height so that

W → ∞, p2
0

/
W → 0. (19)

In this limit it is sufficient to retain only the n = 0 term in
Eq. (18) and expand it to the leading order in W−1 to obtain

T (p,W ) ≈ B(W )p exp(−ipd), (20)

with

B(W ) ≡ −4i(2W )−1/2 exp(−
√

2Wd), (21)

which can be made valid for all incident momenta. This is an
example of superoscillatory behavior similar to that discussed
in Sec. III. Indeed, T (p,W )/p [regular at p = 0 according
to Eq. (17)], just like T (p,W ) itself, has no poles in in the
upper half of the complex p plane and its Fourier spectrum
cannot contain negative frequencies. Yet according to Eq. (20)
in a limited region around p = 0 the ratio T (p)/p mimics
the behavior of exp(−ipd). Further, inserting (20) into Eq. (6)
shows that that η(x,p0) mimics the behavior of a singular
distribution with support at x = d,

η(x,p0) ≈ [δ(x − d) + i∂xδ(x − d)/p0], (22)

for a class of not-too-narrow wave packets whose momentum
distributions probe only the superoscillatory part of T (p). Ac-
cordingly, we find the transmitted pulse reduced in magnitude
and advanced relative to the free propagation by the barrier
width d,

GT (x,t,p0) ≈ T (p0,W )[G0(x − d,t,p0)

− i∂xG0(x − d,t,p0)/p0], (23)

where T (p0,W ) is given by Eq. (20). There is also an
additional distortion term proportional to ∂xG0(x − d,t,
p0), which becomes negligible for sufficiently fast
particles.

Thus, for a given incident Gaussian wave packet one can
always find a barrier high enough for the transmitted pulse to
be accurately given by Eq. (23).

The price for such an advancement is the reduction of
the tunneling probability by a factor ∼exp(−2

√
2Wd) which

makes transmission a very rare event.
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FIG. 2. (Color online) High rectangular barrier: (a) ReT (p)/
pB(W ) (solid) and cos(pd) (dashed) for β ≡

√
2Wd = 20. Also

shown is |A(p − p0)| scaled to a unit height (thick solid). (b) The
shape of the transmitted pulse |GT (x,p0,t)/T (p0,W )|: exact (solid)
and given by Eq. (23) (dashed); (c and d) same as (a) and (b) but for
β = 100; (e and f) same as (a) and (b) but for β = 700.

The transmission amplitude T (p) and the transmitted pulse
GT (x,t,p0) are shown in Fig. 2 for the same Gaussian wave
packet and different barrier heights. Figure 2 is similar to Fig. 3
of Ref. [8] with the difference that for a rectangular barrier
the superoscillatory band where T (p) can be approximated
by Eq. (20) does not have well defined boundaries, whereas
for the system studied in Ref. [8] the transmission amplitude
exhibited a much more rapid growth marking the edges of
the band. Accordingly, the deviations of GT (x,t,p0) from
the predictions of Eq. (23) at lower barrier heights are less
pronounced than the distortion of the shape of the transmitted
pulse shown in Fig. 3(b) of Ref. [8].
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(solid). Also shown is |A(p − p0)| scaled to a unit height (thick
solid). (b) The shape of the transmitted pulse |GT (x,p0,t)/T (p0,W )|:
exact (solid) and given by Eq. (31) (dashed); (c and d) same as
(a) and (b) but for β = 100; (e and f) same as (a) and (b) but for
β = 700.

VI. TUNNELLING ACROSS A WIDE RECTANGULAR
BARRIER

Next we consider the case of tunneling across a rectangular
barrier whose width increases while its height and the mean
kinetic energy of the particle are kept constant,

d → ∞, p0 = const. (24)

We will also assume that the width of the incident wave packet
increases proportionally to the barrier width,

σ/d ≡ γ = const., (25)

so that its momentum space width σp decreases with d,

σp = 2/σ = 2/γ d. (26)

It is easy to show that under these conditions the transmitted
pulse will have the shape of the initial envelope not just
advanced relative to free propagation but also shifted into the
complex coordinate plane. Indeed, retaining only the n = 0
term in Eq. (18) and expanding the exponent in a Taylor series
around p0 we may write (k0 ≡

√
p2

0 − 2W )

−id(p − k) = −id

∞∑

n=0

∂n
p(p − k)|p=p0 (p − p0)n/n!

≈ − id(p0 − k0) − id

[
1 + ip0√

2W − p0

]
(p−p0)

(27)

for all initial momenta |p − p0| <∼ σp ∼ 1/d. We may also
replace p with p0 everywhere in the pre-exponential factor to
finally obtain

T (p,W ) ≈ B(p0,W ) exp(−ipα) (28)

with

α ≡ d + ip0d/
√

2W − p0 (29)

and

B(p0,W ) = 4p0k0 exp[−id(p0 − k0) + iαp0]
(p0 + k0)2

. (30)

Thus, in the range of interest, p0 − σp <∼ p <∼ p0 + σp, T (p)
exhibits a kind of a superoscillatory behavior with a complex
valued frequency α, Reα > 0, similar to that studied in
Ref. [8]. As a result, for the transmitted pulse we find

GT (x,t,p0) = B(p0,W )G0(x − Reα − iImα,t,p0). (31)

With T (p,W ) given by Eq. (28) we expect [8] at
least several moments of the DAD η(x,p0) to equal
αn, x̄n ≡

∫
xnη(x,p0)dx = αn, n = 0,1, . . .. Using the

identity

x̄n = in∂n
pT (p)/T (p)|p=p0 , n = 0,1, . . . , (32)

and noting that as d → ∞ the main contribution to x̄n comes
from differentiating n times the exponential of the first term in
the expansion (18), we obtain

limd→∞x̄n/dn = (α/d)n + O(1/d). (33)
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We can now confirm the result (31) by repeating the
calculation in the coordinate space. Consider, for simplicity, a
Gaussian function which can be expanded in a Taylor series

exp(−x2/γ 2d2) ≈
∑

n

(−1)n(x/γ d)2n/n!. (34)

Inserting (34) into Eq. (10) and using Eq. (33) we obtain
(Cn

k = n!/k!(n − k)! is the binomial coefficient)
∫

η(p0,x
′) exp[−(x − x ′)2/γ 2d2]dx ′

≈
∑

n

(−1)n

n!(γ d)2n

2n∑

k=0

C2n
k xkx̄2n−k

≈ exp[−(x − α)2/γ 2d2] + O(1/d). (35)

Thus, for a given ratio σ/d one can always find a barrier
wide enough for the transmitted pulse to be accurately given
by Eq. (31).

The price for an accurate translation of the freely propagat-
ing envelope into the complex x plane is the reduction of the
tunneling probability by a factor |B(p0,W )|2 which makes the
transmission a very rare event.

The ratio between the exact transmission amplitude T (p)
and the one given by Eq. (28) as well as the transmitted
envelope GT (x,t,p0) are shown in Fig. 3 for the same ratio
σ/d and different barrier width. Figure 3 is similar to Figs. 3(c)
and 3(f) of Ref. [8] with the difference that for a rectangular
barrier the complex superoscillatory band where T (p) can
be approximated by Eq. (28) does not have well defined
boundaries.

VII. MOMENTUM FILTERING

Equation (31) describes, in a compact form, two effects
related to the transmission of a Gaussian wave packet. One is
a constant shift in the position of the transmitted envelope; the
other is an increase of its average velocity due to suppression of
lower momenta contained in the initial distribution. Inserting
Eq. (28) and (14) into (1) and completing the square in the
exponent we have

−(p − p0)2σ 2/4 − iαp = −(p − p0 − 2Imα/σ 2)2σ 2/4

− ipReα + p0Imα + (Imα)2/σ 2,

(36)

which shows that after the transmission the mean momentum
has increased by

-p0 = 2p0d/
[
σ 2(2W − p2

0

)1/2]
. (37)

Note that -p0 vanishes for a wave packet very broad in the
coordinate (narrow in the momentum) space. Accordingly, for
observable probability density with the help of Eqs. (29) and
(15) we find

ρT (x,t) ≡ |GT (x,t,p0|2

= C exp{−2[x − (p0 +-p0)t − d]2/(σ 2 + 4t2/σ 2)},
(38)

where C = [2/π ]1/2σ |σt |−2|B(p0,W )|2 Thus, the transmitted
probability density has a Gaussian shape which broadens with
time and whose maximum propagates along the trajectory

x = (p0 + -p0)t + d. (39)

The maximum arrives at a detector earlier than that of a
freely propagating pulse [cf. Eq. (16)], first, because of
the increase in the mean velocity and, second, because of
additional advancement by a distance d the pulse has received
on traversing the barrier. This advancement, if interpreted
incorrectly, gives rise to the notion of “superluminality.”

VIII. “SUPERLUMINALITY” AND HARTMAN
EFFECT VS. RESHAPING

One might try the following classical reasoning: the
particle emerges from the barrier with its mean velocity
slightly increased and with an additional advancement. The
advancement is due to a shorter duration τ spent inside the
barrier, τ < d/p0. Neglecting -p0t , for the separation -x
between the maxima of the free and the tunnelled pulses
one has -x = p0(d/p0 − τ ). With -x = Reα = d + O(1)
[cf. Eq. (33)] we have τ ∼ O(1/p0) and not O(d/p0) as one
might expect. The fact that τ defined in this manner becomes
independent of d in the limit of large barrier widths is known
as the Hartman effect (see Ref. [3] and references therein).
It is readily seen that for a wide barrier d/τ can be greater
than the speed of light c, hence the term “superluminality” in
the title of this section. It is well known (see, for example,
Refs. [3,10]) that relating the advancement d to the duration
τ spent in the barrier is incorrect, since there is no causal
relationship between the incident and transmitted peaks.

With the help of Eq. (4) we can analyze reshaping mecha-
nism responsible for destroying this realtionship. A barrier acts
as a beam splitter with an infinite (continuum) number of arms.
On exit from each arm there is an initial pulse shifted backward
(delayed) by a distance x ′ and the probability amplitude for
passing through the arm is η(x ′,p0). The shifted shapes are then
recombined to produce the tunnelled pulse which, although
in none of the arms causality is violated, has an apparently
“superluminal” aspect. Resulting wave packet is invariably
deformed, yet it is possible to limit deformation to overall
reduction accompanied by a coordinate shift, which is what
happens in the to cases considered in Secs. V and VI. Standard
quantum mechanics states that if two or more different shifts
contribute to the sum, no definite shift (delay) can be assigned
to the product of their interference. Accordingly, the separation
between the free and the transmitted maxima is obtained as the
first moment x̄ of an alternating complex valued DAD η(x,p0),
for which neither Rex̄ nor Imx̄ are restricted to lie within its
region of support [15]. Averaging with an amplitude rather than
a probability distribution destroys any direct link between the
causal spectrum of delays in the arms of a beam splitter and
apparently noncausal advancement of the transmitted peak.

IX. COMPLEX DELAYS AND THE PHASE TIME

In the case studied in Sec. IV the observable time parameter
of interest is the delay with which the peak of the transmitted
probability density arrives at a detector located at some xd .

042115-5



D. SOKOLOVSKI PHYSICAL REVIEW A 81, 042115 (2010)

With the help of Eq. (38) we can express this delay in terms of a
complex valued coordinate shift α ≈ x̄ which initial Gaussian
pulse experiences upon traversing the barrier, so that there
is no need to introduce any additional time parameters. If,
against our own advice, we attribute the coordinate shift x̄ to
the difference between the durations τ and d/p0 spent in the
barrier in tunneling and free motion, for τ we obtain

τ = (d − x̄)/p0 = d/p0 − i∂p ln T (p0)/p0. (40)

Equation (40) defines a complex time parameter, whose real
part is the phase time [2,3] often used to quantify advancement
of the transmitted pulse,

τphase ≡ d/p0 + ∂p.(p0)/p0 = Reτ. (41)

We note, however, that little is gained by introducing the time
parameters (40) and (41) as “superluminal” tunneling is readily
analyzed in terms of spacial shifts. It can also be shown that
the envelope plays the role of a pointer in a highly inaccurate
(weak) quantum measurement of such a shift (see Ref. [12] and
references therein). Both τ and τphase are artifacts of a naive
extrapolation of particle-like behavior to a wavelike situation
where, just like in Ref. [6], the initial peak is first destroyed
and then recreated in a different place by an explicitly causal
reshaping mechanism.

X. CONCLUSIONS AND DISCUSSION

In summary, transformation to the coordinate representa-
tion in Eq. (4) helps one analyze the reshaping mechanism of
quantum tunneling as well as the role played by the causality
principle. Like any system characterized by a transmission
amplitude T (p), a potential barrier can be seen as an effective
beam splitter with a continuum of arms (pathways). On
exit from each arm there is a copy of the initial envelope
(subenvelope) shifted relative to free propagation. All suben-
velopes recombine to shape the transmitted wave packet. The
probability amplitude for traveling along a particular pathway
is given by the delay amplitude distribution (6), essentially
a nonanalytic Fourier transform of T (p) with an additional
phase determined by the particle’s mean momentum. Causality
principle ensures that along neither pathway causality is
violated. Thus, for a barrier, none of the subenvelopes are
advanced, and the Fourier spectrum of a barrier transmission
amplitude contains only non-negative frequencies.

Restrictions imposed by the CP cannot, however, prevent
the reduced tunnelled pulse to be advanced even though all
its constituent parts are delayed relative to free propagation.
For example, an accurate advancement by a distance α is
achieved if a sufficient number of moments of the complex

oscillatory distribution η(x,p0) equal αn, n = 0,1, . . . , where
α lies outside the spectrum of available shifts. Equivalently,
in a limited region of momenta, T (p) mimics the exponential
exp(−iαp) with a frequency outside its Fourier spectrum. The
width of this superoscillatory band imposes the limit on the
minimal coordinate width of a wave packet which can be
advanced without distorting the shape of the envelope.

For a rectangular barrier of the width d, one can find at least
two regimes where a situation similar to the one just described
is realized. Well above the barrier a single shift is selected
from the spectrum and one can speak, in a classical sense, of
a duration spent in the barrier region. Whenever more than
two subenvelopes envelopes interfere, no such duration can
be assigned to the distorted (reshaped) transmitted pulse. In
the case of a high barrier considered in Sec. V, this distortion
takes the form of an overall reduction in size accompanied
by forward shift by the barrier width d. In the special case
of tunneling across a wide barrier considered in Sec. VI the
distortion takes the form of an overall reduction accompanied
by a complex valued coordinate shift α. The shift accounts
for the shift of the maximum of the transmitted probability
density as well as for the increase in its velocity. Since the
free Hamiltonian commutes with a coordinate shift, whether
real or complex, the above remains true at any time, once the
transmission is completed. This analysis can be compared with
the description of the effect in terms of the phase time (41):
were the transmitted pulse (31) to represent (which it does not)
a classical particle crossing the barrier region, such a particle
would have to cross a wide barrier infinitely fast. Arguably, the
latter statement raises more questions then provides answers
and contributes to the extended discussion of the subject which
continues in the literature [2].

The origin of α is of some interest. The shift α ≈ x̄ is the
complex-valued first moment of the alternating delay ampli-
tude distribution η(x,p0). It has been shown in Ref. [15] that
such nonprobabilistic averages arise whenever one attempts to
answer the “which way?” (in our case, “which shift?”) question
without destroying interference between different pathways.
Standard quantum mechanics cannot give (and, according to
Ref. [16], best avoids trying to give) a consistent answer to
this question, and the overinterpretation of the “weak value”
α leads to a false notion of “superluminarity” as discussed
above.

Finally, our analysis applies to a wave packet of an arbitrary
shape with a sufficiently narrow momentum distribution. The
Gaussian wave packets considered above have an additional
advantage of being sufficiently well localised in both the
coordinate and the momentum spaces and, for this reason,
provide a good illustration of the quantum speed up effect.

[1] L. A. MacColl, Phys. Rev. 40, 621 (1932).
[2] For reviews, see: E. H. Hauge and J. A. Stoevneng, Rev.

Mod. Phys. 61, 917 (1989); C. A. A. de Carvalho and H. M.
Nussenzweig, Phys. Rep. 364, 83 (2002); V. S. Olkhovsky, E.
Recami, and J. Jakiel, ibid. 398, 133 (2004).

[3] J. G. Muga, in Time in Quantum Mechanics, Vol. 1, 2nd ed.,
edited by G. Muga, R. Sala Mayato, and I. Egusquiza (Springer,
Berlin and Heidelberg, 2008).

[4] T. E. Hartman, J. Appl. Phys. 33, 3427 (1962).
[5] R. W. Boyd, D. J. Gauthier, and P. Narum, in Time in Quantum

Mechanics, Vol. 2, edited by G. Muga, A. Ruschhaupt, and
A. del Campo (Springer, Berlin and Heidelberg, 2009).

[6] A trivial yet instructive example of reshaping consists in
preparing a piece of paper in a shape of, say, equilateral triangle,
using scissors to cut out a smaller triangle of the same shape from
its front part, and discarding the rest. The peak of the triangle

042115-6

http://dx.doi.org/10.1103/PhysRev.40.621
http://dx.doi.org/10.1103/RevModPhys.61.917
http://dx.doi.org/10.1103/RevModPhys.61.917
http://dx.doi.org/10.1016/S0370-1573(01)00092-8
http://dx.doi.org/10.1016/j.physrep.2004.06.001
http://dx.doi.org/10.1063/1.1702424


CAUSALITY, APPARENT “SUPERLUMINALITY,” AND . . . PHYSICAL REVIEW A 81, 042115 (2010)

would undergo an instantaneous advancement, which, needless
to say, is in perfect agreement with relativistic causality.

[7] Yun-ping Wang and Dian-lin Zhang, Phys. Rev. A 52, 2597
(1995); Y. Japha and G. Kurizki, ibid. 53, 586 (1996); X. Chen
and C. F. Li, Eur. Phys. Lett. 82, 30009 (2008).

[8] D. Sokolovski and R. Sala Mayato, Phys. Rev. A 81, 022105
(2010).

[9] M. V. Berry, J. Phys. A 27, L391 (1999); M. V. Berry and
S. Popescu, ibid. 39, 6965 (2006).

[10] Y. Aharonov, N. Erez, and B. Reznik, Phys. Rev. A 65, 052124
(2002).

[11] D. Sokolovski and L. M. Baskin, Phys. Rev. A 36, 4604 (1987).
[12] D. Sokolovski, A. Z. Msezane, and V. R. Shaginyan, Phys. Rev.

A 71, 064103 (2005).
[13] For a relation between the causality principle and the fact

that a scattering amplitude must be an analytic function in

the complex momentum plane see, for example, A. Baz,
Y. Zeldovich, and A. Perelomov, Scattering Reactions and
Decay in Nonrelativistic Quantum Mechanics, (Israel Program
for Scientific Translations, Jerusalem, 1969), chap. 3 and
references therein.

[14] The role of the causality principle becomes clearer in the case
of a light pulse propagating, say, across a slab of a fast-light
material [5]. In the absence of bound state in which a photon
can be captured, the subenvelopes that build up the transmitted
pulse cannot be advanced relative to the free propagation at the
maximum possible speed c.

[15] Properties of complex alternating distributions and their relation
to “weak” values have been studied in D. Sokolovski, Phys. Rev.
A 76, 042125 (2007).

[16] R. P. Feynman, The Character of Physical Law (Modern Library,
1994).

042115-7

http://dx.doi.org/10.1103/PhysRevA.52.2597
http://dx.doi.org/10.1103/PhysRevA.52.2597
http://dx.doi.org/10.1103/PhysRevA.53.586
http://dx.doi.org/10.1209/0295-5075/82/30009
http://dx.doi.org/10.1103/PhysRevA.81.022105
http://dx.doi.org/10.1103/PhysRevA.81.022105
http://dx.doi.org/10.1088/0305-4470/27/11/008
http://dx.doi.org/10.1088/0305-4470/39/22/011
http://dx.doi.org/10.1103/PhysRevA.65.052124
http://dx.doi.org/10.1103/PhysRevA.65.052124
http://dx.doi.org/10.1103/PhysRevA.36.4604
http://dx.doi.org/10.1103/PhysRevA.71.064103
http://dx.doi.org/10.1103/PhysRevA.71.064103
http://dx.doi.org/10.1103/PhysRevA.76.042125
http://dx.doi.org/10.1103/PhysRevA.76.042125

