5,806 research outputs found

    Investigating the rotational evolution of young, low mass stars using Monte Carlo simulations

    Full text link
    We investigate the rotational evolution of young stars through Monte Carlo simulations. We simulate 280,000 stars, each of which is assigned a mass, a rotational period, and a mass accretion rate. The mass accretion rate depends on mass and time, following power-laws indices 1.4 and -1.5, respectively. A mass-dependent accretion threshold is defined below which a star is considered as diskless, which results in a distribution of disk lifetimes that matches observations. Stars are evolved at constant angular spin rate while accreting and at constant angular momentum when they become diskless. We recover the bimodal period distribution seen in several young clusters. The short period peak consists mostly of diskless stars and the long period one is mainly populated by accreting stars. Both distributions present a long tail towards long periods and a population of slowly rotating diskless stars is observed at all ages. We reproduce the observed correlations between disk fraction and spin rate, as well as between IR excess and rotational period. The period-mass relation we derive from the simulations exhibits the same global trend as observed in young clusters only if we release the disk locking assumption for the lowest mass stars. We find that the time evolution of median specific angular momentum follows a power law index of -0.65 for accreting stars and of -0.53 for diskless stars, a shallower slope that results from a wide distribution of disk lifetimes. Using observationally-documented distributions of disk lifetimes, mass accretion rates, and initial rotation periods, and evolving an initial population from 1 to 12 Myr, we reproduce the main characteristics of pre-main sequence angular momentum evolution, which supports the disk locking hypothesis. (abridged)Comment: 11 pages, 14 figures, accepted for publication in A&

    The Magnetic Fields of Classical T Tauri Stars

    Full text link
    We report new magnetic field measurements for 14 classical T Tauri stars (CTTSs). We combine these data with one previous field determination in order to compare our observed field strengths with the field strengths predicted by magnetospheric accretion models. We use literature data on the stellar mass, radius, rotation period, and disk accretion rate to predict the field strength that should be present on each of our stars according to these magnetospheric accretion models. We show that our measured field values do not correlate with the field strengths predicted by simple magnetospheric accretion theory. We also use our field strength measurements and literature X-ray luminosity data to test a recent relationship expressing X-ray luminosity as a function of surface magnetic flux derived from various solar feature and main sequence star measurements. We find that the T Tauri stars we have observed have weaker than expected X-ray emission by over an order of magnitude on average using this relationship. We suggest the cause for this is actually a result of the very strong fields on these stars which decreases the efficiency with which gas motions in the photosphere can tangle magnetic flux tubes in the corona.Comment: 25 pages, 5 figure

    A 10-micron Search for Inner-Truncated Disks Among Pre-Main-Sequence Stars With Photometric Rotation Periods

    Full text link
    We use mid-IR (primarily 10 Ό\mum) photometry as a diagnostic for the presence of disks with inner cavities among 32 pre-main sequence stars in Orion and Taurus-Auriga for which rotation periods are known and which do not show evidence for inner disks at near-IR wavelengths. Disks with inner cavities are predicted by magnetic disk-locking models that seek to explain the regulation of angular momentum in T Tauri stars. Only three stars in our sample show evidence for excess mid-IR emission. While these three stars may possess truncated disks consistent with magnetic disk-locking models, the remaining 29 stars in our sample do not. Apparently, stars lacking near-IR excesses in general do not possess truncated disks to which they are magnetically coupled. We discuss the implications of this result for the hypothesis of disk-regulated angular momentum. Evidently, young stars can exist as slow rotators without the aid of present disk-locking, and there exist very young stars already rotating near breakup velocity whose subsequent angular momentum evolution will not be regulated by disks. Moreover, we question whether disks, when present, truncate in the manner required by disk-locking scenarios. Finally, we discuss the need for rotational evolution models to take full account of the large dispersion of rotation rates present at 1 Myr, which may allow the models to explain the rotational evolution of low-mass pre-main sequence stars in a way that does not depend upon braking by disks.Comment: 20 pages, 4 figure

    Dynamical Masses of Young Stars in Multiple Systems

    Full text link
    We present recent measurements of the orbital motion in the young binaries DF Tau and ZZ Tau, and the hierarchical triple Elias 12, that were obtained with the Fine Guidance Sensors on the HST and at the Keck Observatory using adaptive optics. Combining these observations with previous measurements from the literature, we compute preliminary orbital parameters for DF Tau and ZZ Tau. We find that the orbital elements cannot yet be determined precisely because the orbital coverage spans only about 90 degr in position angle. Nonetheless, the range of possible values for the period and semi-major axis already defines a useful estimate for the total mass in DF Tau and ZZ Tau, with values of 0.90{+0.85}{-0.35} M_sun and 0.81{+0.44}{-0.25} M_sun, respectively, at a fiducial distance of 140 pc.Comment: 26 pages, 9 figures, accepted for publication in A

    An HST/WFPC2 Survey for Brown Dwarf Binaries in the alpha Per and the Pleiades Open Clusters

    Full text link
    We present the results of a high-resolution imaging survey for brown dwarf (BD) binaries in two open clusters. The observations were carried out with WFPC2 onboard HST. Our sample consists of 8 BD candidates in the alpha Per cluster and 25 BD candidates in the Pleiades. We have resolved 4 binaries in the Pleiades with separations in the range 0".094--0".058, corresponding to projected separations between 11.7~AU and 7.2~AU. No binaries were found among the alpha Per targets. Three of the binaries have proper motions consistent with cluster membership in the Pleiades cluster, and for one of them we report the detection of Halpha in emission and LiI absorption obtained from Keck~II/ESI spectroscopy. One of the binaries does not have a proper motion consistent with Pleiades membership. We estimate that BD binaries wider than 12~AU are less frequent than 9% in the alphaPer and Pleiades clusters. This is consistent with an extension to substellar masses of a trend observed among stellar binaries: the maximum semimajor axis of binary systems decreases with decreasing primary mass. We find a binary frequency of 2 binaries over 13 BDs with confirmed proper motion membership in the Pleiades, corresponding to a binary fraction of 15%(1 sigma error bar +15%/-5%). These binaries are limited to the separation range 7-12~AU and their mass ratios are larger than 0.7. The relatively high binary frequency (>10%), the bias to separations smaller than about 15 AU and the trend to high mass ratios (q>0.7) are fundamental properties of BDs. Current theories of BD formation do not appear to provide a good description of all these properties.Comment: Accepted by ApJ (scheduled publication in volume 594, September 1, 2003

    X-ray to NIR emission from AA Tauri during the dim state - Occultation of the inner disk and gas-to-dust ratio of the absorber

    Full text link
    AA Tau is a well-studied, nearby classical T Tauri star, which is viewed almost edge-on. A warp in its inner disk periodically eclipses the central star, causing a clear modulation of its optical light curve. The system underwent a major dimming event beginning in 2011 caused by an extra absorber, which is most likely associated with additional disk material in the line of sight toward the central source. We present new XMM-Newton X-ray, Hubble Space Telescope FUV, and ground based optical and near-infrared data of the system obtained in 2013 during the long-lasting dim phase. The line width decrease of the fluorescent H2_2 disk emission shows that the extra absorber is located at r>1 r>1\,au. Comparison of X-ray absorption (NHN_H) with dust extinction (AVA_V), as derived from measurements obtained one inner disk orbit (eight days) after the X-ray measurement, indicates that the gas-to-dust ratio as probed by the NHN_H to AVA_V ratio of the extra absorber is compatible with the ISM ratio. Combining both results suggests that the extra absorber, i.e., material at r>1 r>1\,au, has no significant gas excess in contrast to the elevated gas-to-dust ratio previously derived for material in the inner region (â‰Č0.1 \lesssim0.1\,au).Comment: 16 pages, 12 figures, accepted by A&

    Low-Mass Star Formation and the Initial Mass Function in the Rho Ophiuchi Cloud Core

    Full text link
    We have obtained moderate-resolution (R=800-1200) K-band spectra for ~100 stars within and surrounding the cloud core of rho Oph. We have measured spectral types and continuum veilings and have combined this information with results from new deep imaging. The IMF peaks at about 0.4 M_sun and slowly declines to the hydrogen burning limit with a slope of ~-0.5 in logarithmic units (Salpeter is +1.35). Our lower limits on the numbers of substellar objects demonstrate that the IMF probably does not fall more steeply below the hydrogen burning limit, at least down to ~0.02 M_sun. We then make the first comparison of mass functions of stars and pre-stellar clumps (Motte, Andre, & Neri) measured in the same region. The similar behavior of the two mass functions in rho Oph supports the suggestion of Motte et al. and Testi & Sargent that the stellar mass function in young clusters is a direct product of the process of cloud fragmentation. After considering the effect of extinction on the SED classifications of the sample, we find that ~17% of the rho Oph stars are Class I, implying ~0.1 Myr for the lifetime of this stage. In spectra separated by two years, we observe simultaneous variability in the Br gamma emission and K-band continuum veiling for two stars, where the hydrogen emission is brighter in the more heavily veiled data. This behavior indicates that the disk may contribute significantly to continuous K-band emission, in contrast to the proposal that the infalling envelope always dominates. Our detection of strong 2 micron veiling (r_K=1-4) in several Class II and III stars, which should have disks but little envelope material, further supports this proposition.Comment: 35 pages, 14 figures, accepted to Ap

    Time-resolved photometry of the young dipper RX~J1604.3-2130A:Unveiling the structure and mass transport through the innermost disk

    Get PDF
    Context. RX J1604.3-2130A is a young, dipper-type, variable star in the Upper Scorpius association, suspected to have an inclined inner disk, with respect to its face-on outer disk. Aims. We aim to study the eclipses to constrain the inner disk properties. Methods. We used time-resolved photometry from the Rapid Eye Mount telescope and Kepler 2 data to study the multi-wavelength variability, and archival optical and infrared data to track accretion, rotation, and changes in disk structure. Results. The observations reveal details of the structure and matter transport through the inner disk. The eclipses show 5 d quasi-periodicity, with the phase drifting in time and some periods showing increased/decreased eclipse depth and frequency. Dips are consistent with extinction by slightly processed dust grains in an inclined, irregularly-shaped inner disk locked to the star through two relatively stable accretion structures. The grains are located near the dust sublimation radius (similar to 0.06 au) at the corotation radius, and can explain the shadows observed in the outer disk. The total mass (gas and dust) required to produce the eclipses and shadows is a few % of a Ceres mass. Such an amount of mass is accreted/replenished by accretion in days to weeks, which explains the variability from period to period. Spitzer and WISE infrared variability reveal variations in the dust content in the innermost disk on a timescale of a few years, which is consistent with small imbalances (compared to the stellar accretion rate) in the matter transport from the outer to the inner disk. A decrease in the accretion rate is observed at the times of less eclipsing variability and low mid-IR fluxes, confirming this picture. The v sin i = 16 km s(-1) confirms that the star cannot be aligned with the outer disk, but is likely close to equator-on and to be aligned with the inner disk. This anomalous orientation is a challenge for standard theories of protoplanetary disk formation.Science & Technology Facilities Council (STFC): ST/S000399/1. ESO fellowship. European Union (EU): 823 823. German Research Foundation (DFG): FOR 2634/1 TE 1024/1-1. French National Research Agency (ANR): ANR-16-CE31-0013. Alexander von Humboldt Foundation. European Research Council (ERC): 678 194. European Research Council (ERC): 742 095. National Aeronautics & Space Administration (NASA). National Science Foundation (NSF). National Aeronautics & Space Administration (NASA): NNG05GF22G. National Science Foundation (NSF): AST-0909182, AST-1 313 422

    SIM PlanetQuest Key Project Precursor Observations to Detect Gas Giant Planets Around Young Stars

    Get PDF
    We present a review of precursor observing programs for the SIM PlanetQuest Key project devoted to detecting Jupiter mass planets around young stars. In order to ensure that the stars in the sample are free of various sources of astrometric noise that might impede the detection of planets, we have initiated programs to collect photometry, high contrast images, interferometric data and radial velocities for stars in both the Northern and Southern hemispheres. We have completed a high contrast imaging survey of target stars in Taurus and the Pleiades and found no definitive common proper motion companions within one arcsecond (140 AU) of the SIM targets. Our radial velocity surveys have shown that many of the target stars in Sco-Cen are fast rotators and a few stars in Taurus and the Pleiades may have sub-stellar companions. Interferometric data of a few stars in Taurus show no signs of stellar or sub-stellar companions with separations of <5 mas. The photometric survey suggests that approximately half of the stars initially selected for this program are variable to a degree (1 sigma>0.1 mag) that would degrade the astrometric accuracy achievable for that star. While the precursor programs are still a work in progress, we provide a comprehensive list of all targets ranked according to their viability as a result of the observations taken to date. By far, the observable that moves the most targets from the SIM-YSO program is photometric variability.Comment: Accepted for publication in Publications of the Astronomical Society of the Pacific, 25 pages, 9 figure
    • 

    corecore