116 research outputs found

    Deconvolution of Ultrasonic Signals in Porous Materials: Estimation of Acoustic Propagation Parameters andWave Separation.

    Get PDF
    Our study focuses on the development of assessment tools and nondestructive evaluation of porous materials from ultrasonic measurements. These materials are encountered in many industrial applications such as polyurethane foam used for insulation, aluminum foams used in aerospace or cancellous bone for biological applications. Acoustic propagation in these complex heterogeneous materials is governed by the Biot theory [1], involving the propagation of two types of waves: slow and fast wave, whose properties are respectively related to the fluid and solid phases constituting the material. During the propagation, these waves undergo deformations that can be characterized by related propagation models [2], defined by specific frequency-dependent attenuation and dispersion laws. Identification of these waves and of their related propagation parameters then provides a characterization of the material health. This may be a difficult problem in the case of porous materials of low thickness and/or with defects, since the different waves and their echoes may overlap, as shown in the example in Figure 1. Separation of these waveforms should however be possible, by taking into account reliable models describing the propagation of each wave. This paper presents a method for identifying such waves (arrival times and propagation parameters) from signals acquired in transmission or reflection, based on an optimization procedure that minimizes a nonlinear least-squares criterion, which is sufficiently constrained and properly initialized in order to produce robust results. The method is validated with numerical simulations and applied to a laboratory experiment with a porous ceramic plate. This work is partially supported by the French region “Pays de la Loire”, through the DECIMAP project

    Optimisation globale pour la résolution de problÚmes parcimonieux en norme l0l_0

    Get PDF
    International audienceL’approximation parcimonieuse vise Ă  obtenir une solution approchĂ©e d’un systĂšme linĂ©aire ayant le moins de composantes nonnulles possible. Elle peut s’exprimer sous la forme d’un problĂšme d’optimisation bi-objectif dans lequel sont minimisĂ©es une mesure de fidĂ©litĂ©aux donnĂ©es et la « norme » l0l_0 mesurant la parcimonie. Ce problĂšme, essentiellement combinatoire, est souvent contournĂ© par la relaxationconvexe de la norme l0l_0 , ou par des techniques heuristiques d’exploration combinatoire partielle. Cependant, pour de nombreux problĂšmesinverses, de telles approches Ă©chouent Ă  dĂ©terminer le minimum global. Nous proposons l’optimisation globale de ces problĂšmes en norme l0l_0par l’intermĂ©diaire de programmes mixtes en nombres entiers, mĂȘlant variables rĂ©elles et entiĂšres. Des formulations contraintes et pĂ©nalisĂ©essont proposĂ©es, pour diffĂ©rentes mesures lpl_p de fidĂ©litĂ© aux donnĂ©es. L’efficacitĂ© algorithmique de ces formulations est Ă©valuĂ©e sur des donnĂ©essimulĂ©es de dĂ©convolution impulsionnelle. Nous montrons que la rĂ©solution exacte de tels problĂšmes est faisable pour des problĂšmes inverses detaille raisonnable, pour lesquels les solutions classiques Ă©chouent Ă  localiser la solution et l’exploration combinatoire serait prohibitive

    Blind Sparse Deconvolution of Regularly Spaced Ultrasonic Echoes for Thickness Measurement

    Get PDF
    We present a method for estimating the thickness of thin materials from ultrasonic data, in the context of coating measurement or thickness estimation of tubes and pipes. When sending an ultrasonic pulse in normal incidence in a homogeneous material, a set of regularly spaced echoes is received. Thickness is then obtained from the estimation of the time delay between echoes. If thin structures are inspected (or if a low frequency transducer is used), then echoes may overlap. Then, visual interpretation is made difficult and standard automatic methods may fail. We propose a blind sparse deconvolution approach to this problem, where data are modeled as the convolution of a spike train with an unknown impulse response that corresponds to the shape of the echoes. The specific structure of the spike train (regularly spaced spikes with geometrically decreasing amplitudes) is taken into account and the echoes are modeled with a frequency modulated Gaussian signal. Joint estimation of all parameters is performed by non-linear least-squares minimization, with specific constraints, initialization and optimization procedure that aim to avoid local minima. Results are presented on simulated data and in application to thickness estimation of aluminum plates with 2mm and 1mm thickness

    SPATIAL-SPECTRAL UNMIXING OF HYPERSPECTRAL DATA FOR DETECTION AND ANALYSIS OF ASTROPHYSICAL SOURCES WITH THE MUSE INSTRUMENT

    Get PDF
    International audienceDetection and analysis of astrophysical sources from the forthcoming MUSE instrument is of greatest challenge mainly due to the high noise level and the three-dimensional translation variant blur effect of MUSE data. In this work, we use some realistic hypotheses of MUSE to reformulate the data convolution model into a set of linear mixing models corresponding to different, disjoint spectral frames. Based on the linear mixing models, we propose a spatial-spectral unmixing (SSU) algorithm to detect and characterize the galaxy spectra. In each spectral frame, the SSU algorithm identifies the pure galaxy regions with a theoretical guarantee, and estimate spectra based on a sparse approximation assumption. The full galaxy spectra can finally be recovered by concatenating the spectra estimates associated with all the spectral frames. The simulations were performed to demonstrate the efficacy of the proposed SSU algorithm

    Localization and chemical forms of cadmium in plant samples by combining analytical electron microscopy and X-ray spectromicroscopy

    Get PDF
    International audienceCadmium (Cd) is a metal of high toxicity for plants. Resolving its distribution and speciation in plants is essential for understanding the mechanisms involved in Cd tolerance, trafficking and accumulation. The model plant Arabidopsis thaliana was exposed to cadmium under controlled conditions. Elemental distributions in the roots and in the leaves were determined using scanning electron microscopy coupled with energy dispersive X-ray microanalysis (SEM-EDX), and synchrotron-based micro X-ray fluorescence (ÎŒ-XRF), which offers a better sensitivity. The chemical form(s) of cadmium was investigated using Cd LIII-edge (3538 eV) micro X-ray absorption near edge structure (ÎŒ-XANES) spectroscopy. Plant ÎŒ-XANES spectra were fitted by linear combination of Cd reference spectra. Biological sample preparation and conditioning is a critical point because of possible artifacts. In this work we compared freeze-dried samples analyzed at ambient temperature and frozen hydrated samples analyzed at −170 °C. Our results suggest that in the roots Cd is localized in vascular bundles, and coordinated to S ligands. In the leaves, trichomes (epidermal hairs) represent the main compartment of Cd accumulation. In these specialized cells, ÎŒ-XANES results show that the majority of Cd is bound to O/N ligands likely provided by the cell wall, and a minor fraction could be bound to S-containing ligands. No significant difference in Cd speciation was observed between freeze-dried and frozen hydrated samples. This work illustrates the interest and the sensitivity of Cd LIII-edge XANES spectroscopy, which is applied here for the first time to plant samples. Combining ÎŒ-XRF and Cd LIII-edge ÎŒ-XANES spectroscopy offers promising tools to study Cd storage and trafficking mechanisms in plants and other biological samples

    Minimisation de critĂšres de moindres carrĂ©s pĂ©nalisĂ©s par la norme ℓ1 dans le cas complexe

    Get PDF
    Une approche classique des reprĂ©sentations parcimonieuses consiste Ă  minimiser un critĂšre quadratique pĂ©nalisĂ© par la norme ℓ du vecteur inconnu. Si ce vecteur est rĂ©el, l'optimisation peut ĂȘtre abordĂ©e efficacement par programmation quadratique. Le problĂšme est plus dĂ©licat quand le vecteur est complexe. C'est le cas Ă©tudiĂ© ici, car il intĂ©resse des applications importantes comme l'analyse spectrale. Nous examinons le comportement, pour des problĂšmes de grande taille, de deux algorithmes rĂ©cemment proposĂ©s dans ce cadre, de type Iterative Coordinate Descent et Iterative Reweighted Least-Squares. Nous proposons ensuite une procĂ©dure d'optimisation mixte tirant parti des avantages complĂ©mentaires de ceux-ci. Les performances obtenues surpassent nettement celles d'une approche de type Second-Order Cone Programming, Ă©galement proposĂ©e pour ce type de problĂšme

    Fluorescence blind structured illumination microscopy: a new reconstruction strategy

    Get PDF
    International audienceIn this communication, a fast reconstruction algorithm is proposed for fluorescence blind structured illumination mi-croscopy (SIM) under the sample positivity constraint. This new algorithm is by far simpler and faster than existing solutions , paving the way to 3D and real-time 2D reconstruction

    A Joint Inversion Approach of Capacitive and Resistive Measurements for the Estimation of Water Saturation Profiles in Concrete Structures

    Get PDF
    Concrete is a construction material that is well known for its durability. However, it is exposed to environmental attacks that lead to the penetration of aggressive agents such as water and chlorides, thus, threatening its durability and service life. Within this context and exploiting the sensitivity of the electromagnetic properties of concrete to its water content, the literature suggests determining water saturation profiles using non-destructive techniques. For instance, measuring the electrical resistivity at several points of the surface of the concrete structure can lead to an estimate of the resistivity depth profile. Then, after a calibration step, the water saturation depth profile can be obtained and the durability can be assessed. Similarly, the water depth profile can be assessed by dielectric permittivity measurements. In this paper, we propose a new inversion scheme based on the combination of both resistive and capacitive measurements: resistivity and permittivity measurements are inverted jointly to estimate the water saturation profile in concrete. Numerical experiments with simulated data show that information gathered from the two measurements enriches the inversion process, leading to the determination of more reliable water saturation profiles

    ModÚles et algorithmes dédiés pour la résolution de problÚmes inverses parcimonieux en traitement du signal et de l'image

    No full text
    Dans de nombreux problĂšmes inverses rencontrĂ©s en traitement du signal et de l'image, le manque d'information contenue dans les donnĂ©es peut ĂȘtre compensĂ© par la prise en compte d'une contrainte de parcimonie sur la solution recherchĂ©e. L'hypothĂšse de parcimonie suppose que l'objet d'intĂ©rĂȘt peut s'exprimer, de maniĂšre exacte ou approchĂ©e, comme la combinaison linĂ©aire d'un petit nombre d'Ă©lĂ©ments choisis dans un dictionnaire adaptĂ©.Je prĂ©senterai diffĂ©rentes contributions apportĂ©es dans la construction de modĂšles parcimonieux. Dans plusieurs contextes applicatifs, nous cherchons Ă  raffiner les reprĂ©sentations classiques reliant les donnĂ©es aux grandeurs d'intĂ©rĂȘt Ă  estimer, afin de les rendre plus fidĂšles Ă  la rĂ©alitĂ© des processus observĂ©s. Cet enrichissement de modĂšle, s'il permet d'amĂ©liorer la qualitĂ© des solutions obtenues, s'opĂšre au dĂ©triment d'une augmentation de la complexitĂ© calculatoire. Nous proposons donc des solutions algorithmiques dĂ©diĂ©es, relevant essentiellement de l'optimisation mathĂ©matique.Un premier volet envisage la restauration de donnĂ©es d'imagerie hyperspectrale en astronomie, oĂč l'observation de champs profonds depuis le sol s'effectue dans des conditions trĂšs dĂ©gradĂ©es. Le dĂ©bruitage et la dĂ©convolution sont abordĂ©s sous une hypothĂšse de parcimonie des spectres recherchĂ©s dans un dictionnaire de formes Ă©lĂ©mentaires. Des algorithmes d'optimisation capables de gĂ©rer la grande dimension des donnĂ©es sont proposĂ©s, reposant essentiellement sur l'optimisation de critĂšres pĂ©nalisĂ©s par la norme l_1, par une approche de type descente par coordonnĂ©e.Une deuxiĂšme application concerne la dĂ©convolution parcimonieuse pour le contrĂŽle non destructif par ultrasons. Nous construisons, d'une part, un modĂšle "Ă  haute rĂ©solution", permettant de surĂ©chantillonner la sĂ©quence parcimonieuse recherchĂ©e par rapport aux donnĂ©es, pour lequel nous adaptons les algorithmes classiques de dĂ©convolution. D'autre part, nous proposons de raffiner le modĂšle convolutif standard en intĂ©grant des phĂ©nomĂšnes de propagation acoustique, dĂ©bouchant sur un modĂšle non invariant par translation. Ces travaux sont ensuite Ă©tendus Ă  l'imagerie ultrasonore, par la construction de modĂšles de donnĂ©es adaptĂ©s et l'optimisation de critĂšres favorisant la parcimonie.Nous abordons enfin des travaux plus gĂ©nĂ©riques menĂ©s sur l'optimisation globale de critĂšres parcimonieux impliquant la "norme" l_0 (le nombre de coefficients non nuls dans la dĂ©composition recherchĂ©e). Alors que l'essentiel des travaux en estimation parcimonieuse privilĂ©gie des formulations sous-optimales adaptĂ©es aux problĂšmes de grande taille, nous nous intĂ©ressons Ă  la recherche de solutions exactes des problĂšmes l_0 au moyen d'algorithmes branch-and-bound. De tels modĂšles parcimonieux, s'ils s'avĂšrent plus coĂ»teux en temps de calcul, peuvent fournir de meilleures solutions et restent de complexitĂ© abordable sur des problĂšmes de taille modĂ©rĂ©e. Des applications sont proposĂ©es pour la dĂ©convolution de signaux monodimensionnels et pour le dĂ©mĂ©lange spectral.La prĂ©sentation de quelques pistes de recherche Ă  court et moyen terme conclura cet exposĂ©

    Analyse spectrale à haute résolution de signaux irréguliÚrement échantillonnés : application à l'Astrophysique.

    No full text
    The study of many astrophysical phenomena is based on the search for periodicities from time series, as light or radial velocity curves.Because of observation constraints, astrophysical data generally suffer missing data and irregular sampling. Thus, Fourier-based spectral analysis may not be satisfactory, and widespread heuristic CLEAN deconvolution methods may lack accuracy. This thesis addresses spectral analysis as an inverse problem, where the spectrum is discretized on an arbitrarily thin frequency grid. Regularization is then addressed by taking into account the prior sparseness of the solution, as we focus on line spectra estimation.A first approach considers the minimization of a penalized least-squares criterion, where the penalization function is designed to retrieve sparse solutions. In particular, penalization by the l1-norm is studied in application to complex variables, that shows a satisfactory behavior in terms of prior modeling. Several powerful optimization algorithms are developed that allow a very high spectral resolution.Second, a probabilistic regularization is studied by modeling the spectral amplitudes as the realization of a Bernoulli-Gaussian process. Bayesian posterior mean estimation is then addressed using Monte-Carlo Markov Chain methods, which enable a fully unsupervised procedure. The probabilistic interpretation of the estimator combined with variance information for each estimated parameter then provides confidence levels, which is crucial information for astronomy. Significant algorithmic improvements are proposed to accelerate the classic Gibbs sampling algorithm. Then, continuous-valued frequency shifts are introduced that substantially improve the frequency precision at a reasonable computational cost.Simulations illustrate the estimation quality for each method and the performances of the proposed algorithms. An application to astrophysical experimental data is finally presented that brings out the advantage of this methodology compared to classic spectral analysis methods.L'Ă©tude de nombreux phĂ©nomĂšnes astronomiques repose sur la recherche de pĂ©riodicitĂ©s dans des sĂ©ries temporelles (courbes de lumiĂšre ou de vitesse radiale). En raison des contraintes observationnelles, la couverture temporelle des donnĂ©es rĂ©sultantes est souvent incomplĂšte, prĂ©sentant des trous pĂ©riodiques ainsi qu'un Ă©chantillonnage irrĂ©gulier. L'analyse du contenu frĂ©quentiel de telles sĂ©ries basĂ©e sur le spectre de Fourier s'avĂšre alors inefficace et les mĂ©thodes heuristiques de dĂ©convolution de type CLEAN, couramment utilisĂ©es en astronomie, ne donnent pas entiĂšre satisfaction. Cette thĂšse s'inscrit dans le formalisme frĂ©quemment rencontrĂ© depuis les annĂ©es 1990 abordant l'analyse spectrale sous la forme d'un problĂšme inverse, le spectre Ă©tant discrĂ©tisĂ© sur une grille frĂ©quentielle arbitrairement fine. Sa rĂ©gularisation est alors envisagĂ©e en traduisant la nature a priori parcimonieuse de l'objet Ă  reconstruire: nous nous intĂ©ressons ici Ă  la recherche de raies spectrales. Une premiĂšre approche envisagĂ©e a trait au domaine de l'optimisation et consiste Ă  minimiser un critĂšre de type moindres carrĂ©s, pĂ©nalisĂ© par une fonction favorisant les solutions parcimonieuses. La pĂ©nalisation par la norme l1 est en particulier Ă©tudiĂ©e en extension Ă  des variables complexes et s'avĂšre satisfaisante en termes de modĂ©lisation. Nous proposons des solutions algorithmiques particuliĂšrement performantes permettant d'envisager une analyse Ă  trĂšs haute rĂ©solution frĂ©quentielle. Nous Ă©tudions ensuite la modĂ©lisation probabiliste des amplitudes spectrales sous la forme d'un processus Bernoulli-Gaussien, dont les paramĂštres sont estimĂ©s au sens de la moyenne a posteriori Ă  partir de techniques d'Ă©chantillonnage stochastique, permettant d'envisager une estimation totalement non supervisĂ©e. L'interprĂ©tation probabiliste du rĂ©sultat ainsi que l'obtention conjointe des variances associĂ©es, sont alors d'un intĂ©rĂȘt astrophysique majeur, s'interprĂ©tant en termes de niveaux de confiance sur les composantes spectrales dĂ©tectĂ©es. Nous proposons dans un premier temps des amĂ©liorations de l'algorithme Ă©chantillonneur de Gibbs permettant d'accĂ©lĂ©rer l'exploration de la loi Ă©chantillonnĂ©e. Ensuite, nous introduisons des variables de dĂ©calage frĂ©quentiel Ă  valeur continue, permettant d'augmenter la prĂ©cision de l'estimation sans trop pĂ©naliser le coĂ»t calculatoire associĂ©. Pour chaque mĂ©thode proposĂ©e, nous illustrons sur des simulations la qualitĂ© de l'estimation ainsi que les performances des algorithmes dĂ©veloppĂ©s. Leur application Ă  un jeu de donnĂ©es issu d'observations astrophysiques est enfin prĂ©sentĂ©e, mettant en Ă©vidence l'apport d'une telle mĂ©thodologie par rapport aux mĂ©thodes d'analyse spectrale habituellement utilisĂ©es
    • 

    corecore