16 research outputs found

    The Use of Ferritin as a Carrier of Peptides and Its Application for Hepcidin

    Get PDF
    Hepcidin a 25-amino-acid and highly disulfide bonded hormone, is the central regulator of iron homeostasis. In this chapter we propose ferritin as a peptide carrier to promote the association of the hybrid hepcidin/ferritin nanoparticle with a particular cell or tissue for therapeutic or diagnostic use. Indeed, human ferritin H-chain fused directly (on its 5’end) with camel mature hepcidin was cloned into the pASK-43 plus vector and expressed using BL21 (DE3) pLys E. coli strain. The transformed E.coli produced efficiently hepcidin-ferritin construct (hepcH), consisting of 213 amino acids with a molecular weight of 24 KDa. The recovered product is a ferritin exposing hepcidin on outer surface. The hepcH monomer was characterized by immunoblotting using a monoclonal antibody specific for human ferritin and a polyclonal antibody specific for hepcidin-25. The results were also confirmed by MALDI-TOF mass spectrometry. The recombinant native human ferritin and the commercial human hepcidin-25 were used as controls in this experiment. The assembly of hepcH, as an heteropolymer molecule, was performed in presence of denatured human ferritin-H and -L chains. After cysteine oxidation of the recombinant nanoparticles, cellular binding assays were performed on mammalian cells such as mouse monocyte–macrophage cell line J774, HepG2 and COS7

    Production and characterization of functional recombinant hybrid heteropolymers of camel hepcidin and human ferritin H and L chains

    Get PDF
    This article has been accepted for publication in Protein Engineering design and Selection Published by Oxford University Press.Hepcidin is a liver-synthesized hormone that plays a central role in the regulation of systemic iron homeostasis. To produce a new tool for its functional properties the cDNA coding for camel hepcidin-25 was cloned at the 5’end of human FTH sequence into the pASK-IBA43plus vector for expression in Escherichia coli. The recombinant fusion hepcidin–ferritin-H subunit was isolated as an insoluble iron-containing protein. When alone it did not refold in a 24-mer ferritin molecule, but it did when renatured together with H- or L-ferritin chains. We obtained stable ferritin shells exposing about 4 hepcidin peptides per 24-mer shell. The molecules were then reduced and re-oxidized in a controlled manner to allow the formation of the proper hepcidin disulfide bridges. The functionality of the exposed hepcidin was confirmed by its ability to specifically bind the mouse macrophage cell line J774 that express ferroportin and to promote ferroportin degradation. This chimeric protein may be useful for studying the hepcidin–ferroportin interaction in cells and also as drug-delivery agent.This work is partially financed by the Laboratory of Protein Engineering and Bioactive Molecules (LIP-MB) and the Doctoral School of the National Institute of Applied Sciences and Technology (INSAT-Tunis) – University of Carthage

    Biochemical, Biophysical and Functional Characterization of an Insoluble Iron Containing Hepcidin-Ferritin Chimeric Monomer Assembled Together with Human Ferritin H/L Chains at Different Molar Ratios

    Get PDF
    Hepcidin and ferritin are key proteins of iron homeostasis in mammals. In this study, we characterize a chimera by fusing camel hepcidin to a human ferritin H-chain to verify if it retained the properties of the two proteins. The construct (HepcH) is expressed in E. coli in an insoluble and iron-containing form. To characterize it, the product was incubated with ascorbic acid and TCEP to reduce and solubilize the iron, which was quantified with ferrozine. HepcH bound approximately five times more iron than the wild type human ferritin, due to the presence of the hepcidin moiety. To obtain a soluble and stable product, the chimera was denatured and renatured together with different amounts of L-ferritin of the H-chain in order to produce 24-shell heteropolymers with different subunit proportions. They were analyzed by denaturing and non-denaturing PAGE and by mass spectroscopy. At the 1:5 ratio of HepcH to H- or L-ferritin, a stable and soluble molecule was obtained. Its biological activity was verified by its ability to both bind specifically cell lines that express ferroportin and to promote ferroportin degradation. This chimeric molecule showed the ability to bind both mouse J774 macrophage cells, as well as human HepG2 cells, via the hepcidin-ferroportin axis. We conclude that the chimera retains the properties of both hepcidin and ferritin and might be exploited for drug delivery

    Getting value from the waste: recombinant production of a sweet protein by Lactococcus lactis grown on cheese whey

    Get PDF
    Background Recent biotechnological advancements have allowed for the adoption of Lactococcus lactis, a typical component of starter cultures used in food industry, as the host for the production of food-grade recombinant targets. Among several advantages, L. lactis has the important feature of growing on lactose, the main carbohydrate in milk and a majoritarian component of dairy wastes, such as cheese whey. Results We have used recombinant L. lactis NZ9000 carrying the nisin inducible pNZ8148 vector to produce MNEI, a small sweet protein derived from monellin, with potential for food industry applications as a high intensity sweetener. We have been able to sustain this production using a medium based on the cheese whey from the production of ricotta cheese, with minimal pre-treatment of the waste. As a proof of concept, we have also tested these conditions for the production of MMP-9, a protein that had been previously successfully obtained from L. lactis cultures in standard growth conditions. Conclusions Other than presenting a new system for the recombinant production of MNEI, more compliant with its potential applications in food industry, our results introduce a strategy to valorize dairy effluents through the synthesis of high added value recombinant proteins. Interestingly, the possibility of using this whey-derived medium relied greatly on the choice of the appropriate codon usage for the target gene. In fact, when a gene optimized for L. lactis was used, the production of MNEI proceeded with good yields. On the other hand, when an E. coli optimized gene was employed, protein synthesis was greatly reduced, to the point of being completely abated in the cheese whey-based medium. The production of MMP-9 was comparable to what observed in the reference conditions.info:eu-repo/semantics/publishedVersio

    Expression and purification of a new recombinant camel hepcidin able to promote the degradation of the iron exporter ferroportin1

    No full text
    International audienceHepcidin, a 25-amino-acid and highly disulfide bonded antimicrobial peptide, is the central regulator of iron homeostasis. This hormone is expressed in response to iron and inflammation and interacts with ferroportinl (FPN1), the only known iron exporter in vertebrates, inducing its internalization and degradation. Thus, the export of iron from cells to plasma will be significantly diminished. Thereby, hepcidin has become the target of intense research studies due to its profound biomedical significance. This study describes the functional expression of recombinant camel hepcidin in Escherichia coli. Biologically active recombinant camel hepcidin was obtained thanks to the production of a hepcidin-thioredoxin fusion protein (TRX-HepcD) and a purified camel hepcidin, with an extra methionine at the N-terminus, was obtained after enterokinase cleavage of the fusion protein. Presence of the four disulfide bridges was verified using MALDI-ToF spectrometry. The recombinant camel hepcidin was compared to related synthetic bioactive peptides, including human hepcidin, and was found equally able to promote ferroportin degradation of mouse macrophages. Furthermore, camel hepcidins exhibits a high capacity to inhibit the growth of Leishmania major promastigotes. These results proved that production of functional camel hepcidin can be achieved in E. coli, this is a major interest for the production of cysteine rich peptides or proteins that can be purified under their functional form without the need of a refolding process. (C) 2015 Elsevier Inc. All rights reserved

    Getting value from the waste: Recombinant production of a sweet protein by Lactococcus lactis grown on cheese whey

    Get PDF
    Background: Recent biotechnological advancements have allowed for the adoption of Lactococcus lactis, a typical component of starter cultures used in food industry, as the host for the production of food-grade recombinant targets. Among several advantages, L. lactis has the important feature of growing on lactose, the main carbohydrate in milk and a majoritarian component of dairy wastes, such as cheese whey. Results: We have used recombinant L. lactis NZ9000 carrying the nisin inducible pNZ8148 vector to produce MNEI, a small sweet protein derived from monellin, with potential for food industry applications as a high intensity sweetener. We have been able to sustain this production using a medium based on the cheese whey from the production of ricotta cheese, with minimal pre-treatment of the waste. As a proof of concept, we have also tested these conditions for the production of MMP-9, a protein that had been previously successfully obtained from L. lactis cultures in standard growth conditions. Conclusions: Other than presenting a new system for the recombinant production of MNEI, more compliant with its potential applications in food industry, our results introduce a strategy to valorize dairy effluents through the synthesis of high added value recombinant proteins. Interestingly, the possibility of using this whey-derived medium relied greatly on the choice of the appropriate codon usage for the target gene. In fact, when a gene optimized for L. lactis was used, the production of MNEI proceeded with good yields. On the other hand, when an E. coli optimized gene was employed, protein synthesis was greatly reduced, to the point of being completely abated in the cheese whey-based medium. The production of MMP-9 was comparable to what observed in the reference conditions
    corecore