489 research outputs found

    Latest Updates from the AlCap Experiment

    Full text link
    The AlCap experiment is a joint venture between the COMET and Mu2e collaborations that will measure the rate and spectrum of particles emitted after nuclear muon capture on aluminium. Both collaborations will search for the charged lepton flavour violating process of neutrinoless muon-to-electron conversion by stopping muons in an aluminium target. Knowledge of other particles emitted during this process is important. The AlCap charged particle emission data was collected at the Paul Scherrer Institut in Switzerland over two runs in 2013 and 2015. In this talk, the experiment will be described and the current status will be presented.Comment: Talk presented CIPANP2018. 8 pages, LaTeX, 9 figure

    Quantitative trait locus analysis of parasitoid counteradaptation to symbiont-conferred resistance.

    Get PDF
    Insect hosts and parasitoids are engaged in an intense struggle of antagonistic coevolution. Infection with heritable bacterial endosymbionts can substantially increase the resistance of aphids to parasitoid wasps, which exerts selection on parasitoids to overcome this symbiont-conferred protection (counteradaptation). Experimental evolution in the laboratory has produced counteradapted populations of the parasitoid wasp Lysiphlebus fabarum. These populations can parasitize black bean aphids (Aphis fabae) protected by the bacterial endosymbiont Hamiltonella defensa, which confers high resistance against L. fabarum. We used two experimentally evolved parasitoid populations to study the genetic architecture of the counteradaptation to symbiont-conferred resistance by QTL analysis. With simple crossing experiments, we showed that the counteradaptation is a recessive trait depending on the maternal genotype. Based on these results, we designed a customized crossing scheme to genotype a mapping population phenotyped for the ability to parasitize Hamiltonella-protected aphids. Using 1835 SNP markers obtained by ddRAD sequencing, we constructed a high-density linkage map consisting of six linkage groups (LGs) with an overall length of 828.3 cM and an average marker spacing of 0.45 cM. We identified a single QTL associated with the counteradaptation to Hamiltonella in L. fabarum on linkage group 2. Out of 120 genes located in this QTL, several genes encoding putative venoms may represent candidates for counteradaptation, as parasitoid wasps inject venoms into their hosts during oviposition

    Hyperstructure Maintenance Costs in Large-scale Wikis

    No full text
    Wiki systems have developed over the past years as lightweight, community-editable, web-based hypertext systems. With the emergence of Semantic Wikis, these collections of interlinked documents have also gained a dual role as ad-hoc RDF graphs. However, their roots lie at the limited hypertext capabilities of the World Wide Web: embedded links, without support for composite objects or transclusion. In this paper, we present experimental evidence that hyperstructure changes, as opposed to content changes, form a substantial proportion of editing effort on a large-scale wiki. The experiment is set in the wider context of a study of how the technologies developed during decades of hypertext research may be applied to improve management of wiki document structure and, with semantic wikis, knowledge structure

    Global change-type drought-induced tree mortality: Vapor pressure deficit is more important than temperature per se in causing decline in tree health

    Full text link
    Drought-induced tree mortality is occurring across all forested continents and is expected to increase worldwide during the coming century. Regional-scale forest die-off influences terrestrial albedo, carbon and water budgets, and landsurface energy partitioning. Although increased temperatures during drought are widely identified as a critical contributor to exacerbated tree mortality associated with "global-change-type drought", corresponding changes in vapor pressure deficit (D) have rarely been considered explicitly and have not been disaggregated from that of temperature per se. Here, we apply a detailed mechanistic soil-plant-atmosphere model to examine the impacts of drought, increased air temperature (+2°C or +5°C), and increased vapor pressure deficit (D; +1 kPa or +2.5 kPa), singly and in combination, on net primary productivity (NPP) and transpiration and forest responses, especially soil moisture content, leaf water potential, and stomatal conductance. We show that increased D exerts a larger detrimental effect on transpiration and NPP, than increased temperaturealone, with or without the imposition of a 3-month drought. Combined with drought, the effect of increased D on NPP was substantially larger than that of drought plus increased temperature. Thus, the number of days when NPP was zero across the 2-year simulation was 13 or 14 days in the control and increased temperature scenarios, but increased to approximately 200 days when D was increased. Drought alone increased the number of days of zero NPP to 88, but drought plus increased temperature did not increase the number of days. In contrast, drought and increased D resulted in the number of days when NPP = 0 increasing to 235 (+1 kPa) or 304 days (+2.5 kPa). We conclude that correct identification of the causes of global change-type mortality events requires explicit consideration of the influence of D as well as its interaction with drought and temperature. © 2013 The Authors

    Open semantic hyperwikis

    Get PDF
    Wikis are lightweight, community-editable, web-based hypertext systems, which can be described as a website that anybody can edit. From this collaborative base has grown significant efforts at large-scale knowledge management such as Wikipedia. Recently, ‘semantic’ wiki systems have been developed with typed links, such that the structure of nodes and links is analogous to an RDF graph of resources and arcs: a machineprocessable representation of the relations between articles which can form part of the web of linked data. Despite this, the hypermedia side of wiki systems has so far largely been constrained to the web model of simple embedded, unidirectional links. This research considers the hypertext origins of wiki systems, asks, and answers how the technologies developed during decades of hypertext research may be applied to better manage their document, and thus knowledge, structure. We present experimental evidence supporting the hypothesis that additional hypermedia features would be useful to wiki editors on both macro- and micro-scales. Quantitative analysis of editing logs from a large-scale wiki shows that hyperstructure changes form a substantial proportion of editing effort. Conversely, qualitative user studies show that individual user editing can be better supported by classical but since overlooked hypertext features such as first-class links and transclusion. We then specify an extensive model for a ‘open semantic hyperwiki’ system which draws from these fields, based around first-class links with support for transclusion and advanced functional link types, with defined semantics for the role of versioning and parametric nodes in the linked data world, while mindful to preserve the core simplicity that allows non-expert users to contribute. This is followed by a practical approach to its implementation in terms of an existing experimental modular wiki foundation, and the actual prototype implementation, which has been made available as open source software. Finally, we work through applying the system to a set of real-world use cases which are currently employing classic, non-semantic wiki software, and evaluate the implementation in comparison to a conventional semantic wiki in a user study.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    A New Land Surface Hydrology within the Noah-WRF Land-Atmosphere Mesoscale Model Applied to Semiarid Environment: Evaluation over the Dantiandou Kori (Niger)

    Get PDF
    Land-atmosphere feedbacks, which are particularly important over the Sahel during the West African Monsoon (WAM), partly depend on a large range of processes linked to the land surface hydrology and the vegetation heterogeneities. This study focuses on the evaluation of a new land surface hydrology within the Noah-WRF land-atmosphere-coupled mesoscale model over the Sahel. This new hydrology explicitly takes account for the Dunne runoff using topographic information, the Horton runoff using a Green-Ampt approximation, and land surface heterogeneities. The previous and new versions of Noah-WRF are compared against a unique observation dataset located over the Dantiandou Kori (Niger). This dataset includes dense rain gauge network, surfaces temperatures estimated from MSG/SEVIRI data, surface soil moisture mapping based on ASAR/ENVISAT C-band radar data and in situ observations of surface atmospheric and land surface energy budget variables. Generally, the WAM is reasonably reproduced by Noah-WRF even if some limitations appear throughout the comparison between simulations and observations. An appreciable improvement of the model results is also found when the new hydrology is used. This fact seems to emphasize the relative importance of the representation of the land surface hydrological processes on the WAM simulated by Noah-WRF over the Sahel

    Modelling vegetation water-use and groundwater recharge as affected by climate variability in an arid-zone Acacia savanna woodland

    Full text link
    © 2014 Elsevier B.V. For efficient and sustainable utilisation of limited groundwater resources, improved understanding of how vegetation water-use responds to climate variation and the corresponding controls on recharge is essential. This study investigated these responses using a modelling approach. The biophysically based model WAVES was calibrated and validated with more than two years of field experimental data conducted in Mulga (. Acacia aneura) in arid central Australia. The validated model was then applied to simulate vegetation growth (as changes in overstory and understory leaf area index; LAI), vegetation water-use and groundwater recharge using observed climate data for the period 1981-2012. Due to large inter-annual climatic variability, especially precipitation, simulated annual mean LAI ranged from 0.12 to 0.35 for the overstory and 0.07 to 0.21 for the understory. These variations in simulated LAI resulted in vegetation water-use varying greatly from year-to-year, from 64 to 601. mm pa. Simulated vegetation water-use also showed distinct seasonal patterns. Vegetation dynamics affected by climate variability exerted significant controls on simulated annual recharge, which was greatly reduced to 0-48. mm compared to that (58-672. mm) only affected by climate. Understanding how climate variability and land use/land cover change interactively impact on groundwater recharge significantly improves groundwater resources management in arid and semi-arid regions

    Aerodynamic resistance and penman-monteith evapotranspiration over a seasonally two-layered canopy in semiarid central Australia

    Full text link
    Accurate prediction of evapotranspiration E depends upon representative characterization of meteorological conditions in the boundary layer. Drag and bulk transfer coefficient schemes for estimating aerodynamic resistance to vapor transfer were compared over a semiarid natural woodland ecosystem in central Australia. Aerodynamic resistance was overestimated from the drag coefficient, resulting in limited E at intermediate values of vapor pressure deficit. Large vertical humidity gradients were present during the summer, causing divergence between momentum and vapor transport within and above the canopy surface. Because of intermittency in growth of the summer-active, rain-dependent understory and physiological responses of the canopy, leaf resistance varied from less than 50sm-1 to greater than 106sm-1, in which the particularly large values were obtained from inversion of drag coefficient resistance. Soil moisture limitations further contributed to divergence between actual and reference E. Unsurprisingly, inclusion of site-specific meteorological (e.g., vertical humidity gradients) and hydrological (e.g., soil moisture content) information improved the accuracy of predicting E when applying Penman-Monteith analysis. These results apply regardless of canopy layering (i.e., even when the understory was not present) wherever atmospheric humidity gradients develop and are thus not restricted to two-layer canopies in semiarid regions. © 2013 American Meteorological Society

    Transpiration of Eucalyptus woodlands across a natural gradient of depth-to-groundwater

    Full text link
    © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: [email protected]. Water resources and their management present social, economic and environmental challenges, with demand for human consumptive, industrial and environmental uses increasing globally. However, environmental water requirements, that is, the allocation of water to the maintenance of ecosystem health, are often neglected or poorly quantified. Further, transpiration by trees is commonly a major determinant of the hydrological balance of woodlands but recognition of the role of groundwater in hydrological balances of woodlands remains inadequate, particularly in mesic climates. In this study, we measured rates of tree water-use and sapwood 13C isotopic ratio in a mesic, temperate Eucalypt woodland along a naturally occurring gradient of depth-to-groundwater (DGW), to examine daily, seasonal and annual patterns of transpiration. We found that: (i) the maximum rate of stand transpiration was observed at the second shallowest site (4.3 m) rather than the shallowest (2.4 m); (ii) as DGW increased from 4.3 to 37.5 m, stand transpiration declined; (iii) the smallest rate of stand transpiration was observed at the deepest (37.5 m) site; (iv) intrinsic water-use efficiency was smallest at the two intermediate DGW sites as reflected in the Δ13C of the most recently formed sapwood and largest at the deepest and shallowest DGW sites, reflecting the imposition of flooding at the shallowest site and the inaccessibility of groundwater at the deepest site; and (v) there was no evidence of convergence in rates of water-use for co-occurring species at any site. We conclude that even in mesic environments groundwater can be utilized by trees. We further conclude that these forests are facultatively groundwater-dependent when groundwater depth is <9 m and suggest that during drier-than-average years the contribution of groundwater to stand transpiration is likely to increase significantly at the three shallowest DGW sites
    corecore