CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
research
Modelling vegetation water-use and groundwater recharge as affected by climate variability in an arid-zone Acacia savanna woodland
Authors
N Boulain
C Chen
+6 more
L Cheng
J Cleverly
P Cook
D Eamus
Q Yu
L Zhang
Publication date
1 January 2014
Publisher
'Elsevier BV'
Doi
Cite
Abstract
© 2014 Elsevier B.V. For efficient and sustainable utilisation of limited groundwater resources, improved understanding of how vegetation water-use responds to climate variation and the corresponding controls on recharge is essential. This study investigated these responses using a modelling approach. The biophysically based model WAVES was calibrated and validated with more than two years of field experimental data conducted in Mulga (. Acacia aneura) in arid central Australia. The validated model was then applied to simulate vegetation growth (as changes in overstory and understory leaf area index; LAI), vegetation water-use and groundwater recharge using observed climate data for the period 1981-2012. Due to large inter-annual climatic variability, especially precipitation, simulated annual mean LAI ranged from 0.12 to 0.35 for the overstory and 0.07 to 0.21 for the understory. These variations in simulated LAI resulted in vegetation water-use varying greatly from year-to-year, from 64 to 601. mm pa. Simulated vegetation water-use also showed distinct seasonal patterns. Vegetation dynamics affected by climate variability exerted significant controls on simulated annual recharge, which was greatly reduced to 0-48. mm compared to that (58-672. mm) only affected by climate. Understanding how climate variability and land use/land cover change interactively impact on groundwater recharge significantly improves groundwater resources management in arid and semi-arid regions
Similar works
Full text
Available Versions
ResearchOnline@JCU
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:researchonline.jcu.edu.au:...
Last time updated on 09/07/2024
Crossref
See this paper in CORE
Go to the repository landing page
Download from data provider
info:doi/10.1016%2Fj.jhydrol.2...
Last time updated on 25/10/2020
OPUS - University of Technology Sydney
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:opus.lib.uts.edu.au:10453/...
Last time updated on 13/02/2017
ResearchOnline at James Cook University
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:researchonline.jcu.edu.au:...
Last time updated on 11/09/2024