102 research outputs found

    The Ising model and Special Geometries

    Full text link
    We show that the globally nilpotent G-operators corresponding to the factors of the linear differential operators annihilating the multifold integrals χ(n)\chi^{(n)} of the magnetic susceptibility of the Ising model (n6n \le 6) are homomorphic to their adjoint. This property of being self-adjoint up to operator homomorphisms, is equivalent to the fact that their symmetric square, or their exterior square, have rational solutions. The differential Galois groups are in the special orthogonal, or symplectic, groups. This self-adjoint (up to operator equivalence) property means that the factor operators we already know to be Derived from Geometry, are special globally nilpotent operators: they correspond to "Special Geometries". Beyond the small order factor operators (occurring in the linear differential operators associated with χ(5) \chi^{(5)} and χ(6) \chi^{(6)}), and, in particular, those associated with modular forms, we focus on the quite large order-twelve and order-23 operators. We show that the order-twelve operator has an exterior square which annihilates a rational solution. Then, its differential Galois group is in the symplectic group Sp(12,C) Sp(12, \mathbb{C}). The order-23 operator is shown to factorize in an order-two operator and an order-21 operator. The symmetric square of this order-21 operator has a rational solution. Its differential Galois group is, thus, in the orthogonal group SO(21,C) SO(21, \mathbb{C}).Comment: 33 page

    High order Fuchsian equations for the square lattice Ising model: χ(6)\chi^{(6)}

    Full text link
    This paper deals with χ~(6)\tilde{\chi}^{(6)}, the six-particle contribution to the magnetic susceptibility of the square lattice Ising model. We have generated, modulo a prime, series coefficients for χ~(6)\tilde{\chi}^{(6)}. The length of the series is sufficient to produce the corresponding Fuchsian linear differential equation (modulo a prime). We obtain the Fuchsian linear differential equation that annihilates the "depleted" series Φ(6)=χ~(6)23χ~(4)+245χ~(2)\Phi^{(6)}=\tilde{\chi}^{(6)} - {2 \over 3} \tilde{\chi}^{(4)} + {2 \over 45} \tilde{\chi}^{(2)}. The factorization of the corresponding differential operator is performed using a method of factorization modulo a prime introduced in a previous paper. The "depleted" differential operator is shown to have a structure similar to the corresponding operator for χ~(5)\tilde{\chi}^{(5)}. It splits into factors of smaller orders, with the left-most factor of order six being equivalent to the symmetric fifth power of the linear differential operator corresponding to the elliptic integral EE. The right-most factor has a direct sum structure, and using series calculated modulo several primes, all the factors in the direct sum have been reconstructed in exact arithmetics.Comment: 23 page

    Mise en valeur des minerais de phosphate par flottation

    Get PDF
    La flottation est une méthode de séparation des solides qui utilise les différences de propriétés des interfaces entre les solides, une solution  aqueuse et un gaz généralement l’air. Ce procédé est favorisé par  l’introduction de réactifs spécifiques appelés les collecteurs. Dans notre travail, on tient à déterminer les formes d’adsorption des collecteurs sur les surfaces minérales des carbonates (calcite et dolomite) et le quartz en utilisant la spectroscopie IR et la spectrométrie à gamme visible. Les acides gras fractions C10-C16 jouent le rôle de collecteurs anioniques dans la flottation des carbonates alors que le triazine est utilisé comme collecteur cationique pour flotter le quartz. Le concentré de phosphate obtenu pourra être utilisé pour la fabrication de l’acide phosphorique et de superphosphate en qualité d’engrais.Mots-clés : flottation, adsorption, carbonates, collecteurs, quartz, spectrométrieFTI

    Canonical decomposition of linear differential operators with selected differential Galois groups

    Full text link
    We revisit an order-six linear differential operator having a solution which is a diagonal of a rational function of three variables. Its exterior square has a rational solution, indicating that it has a selected differential Galois group, and is actually homomorphic to its adjoint. We obtain the two corresponding intertwiners giving this homomorphism to the adjoint. We show that these intertwiners are also homomorphic to their adjoint and have a simple decomposition, already underlined in a previous paper, in terms of order-two self-adjoint operators. From these results, we deduce a new form of decomposition of operators for this selected order-six linear differential operator in terms of three order-two self-adjoint operators. We then generalize the previous decomposition to decompositions in terms of an arbitrary number of self-adjoint operators of the same parity order. This yields an infinite family of linear differential operators homomorphic to their adjoint, and, thus, with a selected differential Galois group. We show that the equivalence of such operators is compatible with these canonical decompositions. The rational solutions of the symmetric, or exterior, squares of these selected operators are, noticeably, seen to depend only on the rightmost self-adjoint operator in the decomposition. These results, and tools, are applied on operators of large orders. For instance, it is seen that a large set of (quite massive) operators, associated with reflexive 4-polytopes defining Calabi-Yau 3-folds, obtained recently by P. Lairez, correspond to a particular form of the decomposition detailed in this paper.Comment: 40 page

    The diagonal Ising susceptibility

    Full text link
    We use the recently derived form factor expansions of the diagonal two-point correlation function of the square Ising model to study the susceptibility for a magnetic field applied only to one diagonal of the lattice, for the isotropic Ising model. We exactly evaluate the one and two particle contributions χd(1)\chi_{d}^{(1)} and χd(2)\chi_{d}^{(2)} of the corresponding susceptibility, and obtain linear differential equations for the three and four particle contributions, as well as the five particle contribution χd(5)(t){\chi}^{(5)}_d(t), but only modulo a given prime. We use these exact linear differential equations to show that, not only the russian-doll structure, but also the direct sum structure on the linear differential operators for the n n-particle contributions χd(n)\chi_{d}^{(n)} are quite directly inherited from the direct sum structure on the form factors f(n) f^{(n)}. We show that the nth n^{th} particle contributions χd(n)\chi_{d}^{(n)} have their singularities at roots of unity. These singularities become dense on the unit circle sinh2Ev/kTsinh2Eh/kT=1|\sinh2E_v/kT \sinh 2E_h/kT|=1 as n n\to \infty.Comment: 18 page

    Ising n-fold integrals as diagonals of rational functions and integrality of series expansions: integrality versus modularity

    Full text link
    We show that the n-fold integrals χ(n)\chi^{(n)} of the magnetic susceptibility of the Ising model, as well as various other n-fold integrals of the "Ising class", or n-fold integrals from enumerative combinatorics, like lattice Green functions, are actually diagonals of rational functions. As a consequence, the power series expansions of these solutions of linear differential equations "Derived From Geometry" are globally bounded, which means that, after just one rescaling of the expansion variable, they can be cast into series expansions with integer coefficients. Besides, in a more enumerative combinatorics context, we show that generating functions whose coefficients are expressed in terms of nested sums of products of binomial terms can also be shown to be diagonals of rational functions. We give a large set of results illustrating the fact that the unique analytical solution of Calabi-Yau ODEs, and more generally of MUM ODEs, is, almost always, diagonal of rational functions. We revisit Christol's conjecture that globally bounded series of G-operators are necessarily diagonals of rational functions. We provide a large set of examples of globally bounded series, or series with integer coefficients, associated with modular forms, or Hadamard product of modular forms, or associated with Calabi-Yau ODEs, underlying the concept of modularity. We finally address the question of the relations between the notion of integrality (series with integer coefficients, or, more generally, globally bounded series) and the modularity (in particular integrality of the Taylor coefficients of mirror map), introducing new representations of Yukawa couplings.Comment: 100 page

    Ising n-fold integrals as diagonals of rational functions and integrality of series expansions

    Full text link
    We show that the n-fold integrals χ(n)\chi^{(n)} of the magnetic susceptibility of the Ising model, as well as various other n-fold integrals of the "Ising class", or n-fold integrals from enumerative combinatorics, like lattice Green functions, correspond to a distinguished class of function generalising algebraic functions: they are actually diagonals of rational functions. As a consequence, the power series expansions of the, analytic at x=0, solutions of these linear differential equations "Derived From Geometry" are globally bounded, which means that, after just one rescaling of the expansion variable, they can be cast into series expansions with integer coefficients. We also give several results showing that the unique analytical solution of Calabi-Yau ODEs, and, more generally, Picard-Fuchs linear ODEs, with solutions of maximal weights, are always diagonal of rational functions. Besides, in a more enumerative combinatorics context, generating functions whose coefficients are expressed in terms of nested sums of products of binomial terms can also be shown to be diagonals of rational functions. We finally address the question of the relations between the notion of integrality (series with integer coefficients, or, more generally, globally bounded series) and the modularity of ODEs.Comment: This paper is the short version of the larger (100 pages) version, available as arXiv:1211.6031 , where all the detailed proofs are given and where a much larger set of examples is displaye

    Experimental mathematics on the magnetic susceptibility of the square lattice Ising model

    Full text link
    We calculate very long low- and high-temperature series for the susceptibility χ\chi of the square lattice Ising model as well as very long series for the five-particle contribution χ(5)\chi^{(5)} and six-particle contribution χ(6)\chi^{(6)}. These calculations have been made possible by the use of highly optimized polynomial time modular algorithms and a total of more than 150000 CPU hours on computer clusters. For χ(5)\chi^{(5)} 10000 terms of the series are calculated {\it modulo} a single prime, and have been used to find the linear ODE satisfied by χ(5)\chi^{(5)} {\it modulo} a prime. A diff-Pad\'e analysis of 2000 terms series for χ(5)\chi^{(5)} and χ(6)\chi^{(6)} confirms to a very high degree of confidence previous conjectures about the location and strength of the singularities of the nn-particle components of the susceptibility, up to a small set of ``additional'' singularities. We find the presence of singularities at w=1/2w=1/2 for the linear ODE of χ(5)\chi^{(5)}, and w2=1/8w^2= 1/8 for the ODE of χ(6)\chi^{(6)}, which are {\it not} singularities of the ``physical'' χ(5)\chi^{(5)} and χ(6),\chi^{(6)}, that is to say the series-solutions of the ODE's which are analytic at w=0w =0. Furthermore, analysis of the long series for χ(5)\chi^{(5)} (and χ(6)\chi^{(6)}) combined with the corresponding long series for the full susceptibility χ\chi yields previously conjectured singularities in some χ(n)\chi^{(n)}, n7n \ge 7. We also present a mechanism of resummation of the logarithmic singularities of the χ(n)\chi^{(n)} leading to the known power-law critical behaviour occurring in the full χ\chi, and perform a power spectrum analysis giving strong arguments in favor of the existence of a natural boundary for the full susceptibility χ\chi.Comment: 54 pages, 2 figure

    Globally nilpotent differential operators and the square Ising model

    Full text link
    We recall various multiple integrals related to the isotropic square Ising model, and corresponding, respectively, to the n-particle contributions of the magnetic susceptibility, to the (lattice) form factors, to the two-point correlation functions and to their lambda-extensions. These integrals are holonomic and even G-functions: they satisfy Fuchsian linear differential equations with polynomial coefficients and have some arithmetic properties. We recall the explicit forms, found in previous work, of these Fuchsian equations. These differential operators are very selected Fuchsian linear differential operators, and their remarkable properties have a deep geometrical origin: they are all globally nilpotent, or, sometimes, even have zero p-curvature. Focusing on the factorised parts of all these operators, we find out that the global nilpotence of the factors corresponds to a set of selected structures of algebraic geometry: elliptic curves, modular curves, and even a remarkable weight-1 modular form emerging in the three-particle contribution χ(3) \chi^{(3)} of the magnetic susceptibility of the square Ising model. In the case where we do not have G-functions, but Hamburger functions (one irregular singularity at 0 or \infty) that correspond to the confluence of singularities in the scaling limit, the p-curvature is also found to verify new structures associated with simple deformations of the nilpotent property.Comment: 55 page

    Renormalization, isogenies and rational symmetries of differential equations

    Full text link
    We give an example of infinite order rational transformation that leaves a linear differential equation covariant. This example can be seen as a non-trivial but still simple illustration of an exact representation of the renormalization group.Comment: 36 page
    corecore