12,354 research outputs found

    Neutrino Physics

    Full text link
    The fundamental properties of neutrinos are reviewed in these lectures. The first part is focused on the basic characteristics of neutrinos in the Standard Model and how neutrinos are detected. Neutrino masses and oscillations are introduced and a summary of the most important experimental results on neutrino oscillations to date is provided. Then, present and future experimental proposals are discussed, including new precision reactor and accelerator experiments. Finally, different approaches for measuring the neutrino mass and the nature (Majorana or Dirac) of neutrinos are reviewed. The detection of neutrinos from supernovae explosions and the information that this measurement can provide are also summarized at the end.Comment: 50 pages, contribution to the 2011 CERN-Latin-American School of High-Energy Physics, Natal, Brazil, 23 March-5 April 2011, edited by C. Grojean, M. Mulders and M. Spiropulu. arXiv admin note: text overlap with arXiv:1010.5112, arXiv:1010.4131, arXiv:0704.1800 by other author

    Designer: a tool to design and model workflows

    Get PDF
    This work presents the methodological and technical issues for the Designer tool in the OBJECTFLOW Workflow Management System. This tool provides to the user the possibility to model and design workflow diagrams from Business Process of a corporation. This project is the result of an industry-university cooperation.Postprint (published version

    Hierarchy and Polysynchrony in an adaptive network

    Full text link
    We describe a simple adaptive network of coupled chaotic maps. The network reaches a stationary state (frozen topology) for all values of the coupling parameter, although the dynamics of the maps at the nodes of the network can be non-trivial. The structure of the network shows interesting hierarchical properties and in certain parameter regions the dynamics is polysynchronous: nodes can be divided in differently synchronized classes but contrary to cluster synchronization, nodes in the same class need not be connected to each other. These complicated synchrony patterns have been conjectured to play roles in systems biology and circuits. The adaptive system we study describes ways whereby this behaviour can evolve from undifferentiated nodes.Comment: 13 pages, 17 figure

    Invariant approach to flavour-dependent CP-violating phases in the MSSM

    Get PDF
    We use a new weak basis invariant approach to classify all the observable phases in any extension of the Standard Model (SM). We apply this formalism to determine the invariant CP phases in a simplified version of the Minimal Supersymmetric SM with only three non-trivial flavour structures. We propose four experimental measures to fix completely all the observable phases in the model. After these phases have been determined from experiment, we are able to make predictions on any other CP-violating observable in the theory, much in the same way as in the Standard Model all CP-violation observables are proportional to the Jarlskog invariant.Comment: 25 pages, 12 figure

    Extension of the Buchalla-Safir bound

    Full text link
    I provide a simple derivation of the Buchalla-Safir bound on gamma. I generalize it to the case where an upper bound on the phase of the penguin pollution is assumed. I apply the Buchalla-Safir bound, and its generalization, to the recent Belle data on CP violation in B --> pi+ pi-.Comment: 9 pages, 1 figur

    B Physics: CP Violation Beyond the SM

    Get PDF
    We analyse the present experimental evidence for a complex CKM matrix, even allowing for New Physics contributions to ϵK\epsilon_{K}, aJ/ΨKSa_{J/\Psi K_{S}}%, ΔMBd\Delta M_{B_{d}}, ΔMBs\Delta M_{B_{s}}, and the ΔI=1/2\Delta I=1/2 piece of ρρ% B\to \rho \rho and BρπB\to \rho \pi . We emphasize the crucial r\^{o}le played by the angle γ\gamma in both providing irrefutable evidence for a 3×\times 3 complex CKM matrix and placing constraints on the size of NP contributions. It is shown that even if one allows for New Physics a real CKM matrix is excluded at a 99.92% C.L., and the probability for the phase γ\gamma to be in the interval [170;10][10;170][-170^{\circ};-10^{\circ}]\cup \lbrack 10^{\circ};170^{\circ}] is 99.7%. Large value of the phase χ\chi , e.g. of order λ\lambda , is only possible in models where the unitarity of the 3×33\times 3 Cabibbo-Kobayashi-Maskawa matrix is violated through the introduction of extra Q=2/3Q=2/3 quarks. We study the allowed range for χ\chi and the effect of a large χ\chi on various low-energy observables, such as CP asymmetries in BB meson decays. We also discuss the correlated effects which would be observable at high energy colliders, like decays tcZt\to cZ, etc..Comment: 14 pages, 7 figures. Presented at the Symposium in Honour of Gustavo C. Branco "CP Violation and the Flavour Puzzle", Lisbon, Portugal, 19-20 July 2005. To appear in Acta Physica Polonica

    Online Learning Algorithm for Time Series Forecasting Suitable for Low Cost Wireless Sensor Networks Nodes

    Full text link
    Time series forecasting is an important predictive methodology which can be applied to a wide range of problems. Particularly, forecasting the indoor temperature permits an improved utilization of the HVAC (Heating, Ventilating and Air Conditioning) systems in a home and thus a better energy efficiency. With such purpose the paper describes how to implement an Artificial Neural Network (ANN) algorithm in a low cost system-on-chip to develop an autonomous intelligent wireless sensor network. The present paper uses a Wireless Sensor Networks (WSN) to monitor and forecast the indoor temperature in a smart home, based on low resources and cost microcontroller technology as the 8051MCU. An on-line learning approach, based on Back-Propagation (BP) algorithm for ANNs, has been developed for real-time time series learning. It performs the model training with every new data that arrive to the system, without saving enormous quantities of data to create a historical database as usual, i.e., without previous knowledge. Consequently to validate the approach a simulation study through a Bayesian baseline model have been tested in order to compare with a database of a real application aiming to see the performance and accuracy. The core of the paper is a new algorithm, based on the BP one, which has been described in detail, and the challenge was how to implement a computational demanding algorithm in a simple architecture with very few hardware resources.Comment: 28 pages, Published 21 April 2015 at MDPI's journal "Sensors

    Vacuum Induced CP Violation Generating a Complex CKM Matrix with Controlled Scalar FCNC

    Full text link
    We propose a viable minimal model with spontaneous CP violation in the framework of a Two Higgs Doublet Model. The model is based on a generalised Branco-Grimus-Lavoura model with a flavoured Z2\mathbb{Z}_2 symmetry, under which two of the quark families are even and the third one is odd. The lagrangian respects CP invariance, but the vacuum has a CP violating phase, which is able to generate a complex CKM matrix, with the rephasing invariant strength of CP violation compatible with experiment. The question of scalar mediated flavour changing neutral couplings is carefully studied. In particular we point out a deep connection between the generation of a complex CKM matrix from a vacuum phase and the appearance of scalar FCNC. The scalar sector is presented in detail, showing that the new scalars are necessarily lighter than 1 TeV. A complete analysis of the model including the most relevant constraints is performed, showing that it is viable and that it has definite implications for the observation of New Physics signals in, for example, flavour changing Higgs decays or the discovery of the new scalars at the LHC. We give special emphasis to processes like thc,hut\to {\rm h} c,{\rm h} u, as well as hbs,bd{\rm h}\to bs, bd, which are relevant for the LHC and the ILC.Comment: 36 pages, 11 figure
    corecore