Time series forecasting is an important predictive methodology which can be
applied to a wide range of problems. Particularly, forecasting the indoor
temperature permits an improved utilization of the HVAC (Heating, Ventilating
and Air Conditioning) systems in a home and thus a better energy efficiency.
With such purpose the paper describes how to implement an Artificial Neural
Network (ANN) algorithm in a low cost system-on-chip to develop an autonomous
intelligent wireless sensor network. The present paper uses a Wireless Sensor
Networks (WSN) to monitor and forecast the indoor temperature in a smart home,
based on low resources and cost microcontroller technology as the 8051MCU. An
on-line learning approach, based on Back-Propagation (BP) algorithm for ANNs,
has been developed for real-time time series learning. It performs the model
training with every new data that arrive to the system, without saving enormous
quantities of data to create a historical database as usual, i.e., without
previous knowledge. Consequently to validate the approach a simulation study
through a Bayesian baseline model have been tested in order to compare with a
database of a real application aiming to see the performance and accuracy. The
core of the paper is a new algorithm, based on the BP one, which has been
described in detail, and the challenge was how to implement a computational
demanding algorithm in a simple architecture with very few hardware resources.Comment: 28 pages, Published 21 April 2015 at MDPI's journal "Sensors