10 research outputs found

    The importance of the altricial – precocial spectrum for social complexity in mammals and birds:A review

    Get PDF
    Various types of long-term stable relationships that individuals uphold, including cooperation and competition between group members, define social complexity in vertebrates. Numerous life history, physiological and cognitive traits have been shown to affect, or to be affected by, such social relationships. As such, differences in developmental modes, i.e. the ‘altricial-precocial’ spectrum, may play an important role in understanding the interspecific variation in occurrence of social interactions, but to what extent this is the case is unclear because the role of the developmental mode has not been studied directly in across-species studies of sociality. In other words, although there are studies on the effects of developmental mode on brain size, on the effects of brain size on cognition, and on the effects of cognition on social complexity, there are no studies directly investigating the link between developmental mode and social complexity. This is surprising because developmental differences play a significant role in the evolution of, for example, brain size, which is in turn considered an essential building block with respect to social complexity. Here, we compiled an overview of studies on various aspects of the complexity of social systems in altricial and precocial mammals and birds. Although systematic studies are scarce and do not allow for a quantitative comparison, we show that several forms of social relationships and cognitive abilities occur in species along the entire developmental spectrum. Based on the existing evidence it seems that differences in developmental modes play a minor role in whether or not individuals or species are able to meet the cognitive capabilities and requirements for maintaining complex social relationships. Given the scarcity of comparative studies and potential subtle differences, however, we suggest that future studies should consider developmental differences to determine whether our finding is general or whether some of the vast variation in social complexity across species can be explained by developmental mode. This would allow a more detailed assessment of the relative importance of developmental mode in the evolution of vertebrate social systems

    Infestation of froghopper nymphs changes the amounts of total phenolics in sugarcane

    No full text
    The increased rate of sugarcane harvest without previous burn has provided a very favorable environment to the froghopper Mahanarva fimbriolota (Stal, 1854), with high Moisture and low temperature variation. Few works have Studied the response of sugarcane to this pest, so little is known about resistant cultivars. Plant phenolics are widely studied compounds because of their known antifierbivore effect. This research aims to determine if the attack of M.fimbriolata nymphs stimulates the acccumulation of total phenolics in sugarcane. The experiment was carried Out in greenhouse and arranged in completely randomized design, in a 3 x 2 x 4 factorial with three replications. Second instar nymphs of M. fimbriolota were infested at the following rates: control, 2-4 and 4-8 nymphs per pot (first-second infestations, respectively). Pots were covered with nylon net and monitored daily to isolate the effect of leaf Sucking adults. Leaf and root samples were collected and kept frozen in liquid nitrogen until analyses. Infested plants showed higher levels of phenolics in both root and leaf tissues. In roots, the cultivar SP80-1816 accumulated more phenolic compounds in response to the infestation of M. fimbriolata. on the other hand, higher levels were found in leaves and roots of control plants of SP86-42, which might be an indication of a non-preference mechanism. The increase of total phenolics in sugarcane infested with root-sucking froghopper nymphs does not seem to be useful to detect the resistance to this pest

    Effect of host plant on the fitness of the spittlebug Notozulia entreriana: alternative method for rearing

    Get PDF
    Among the species belonging to 11 genera of Neotropical spittlebugs attacking graminaceous plants, Notozulia entreriana (Berg) (Hemiptera: Cercopidae) is one of the most important pests of grasses in several countries of South America. In this study, we evaluate the influence of three economically relevant species of host plants (Poaceae) on life-cycle traits of N. entreriana. We tested for differences in fitness responses (survival and fecundity) of insects on forage species which are frequent hosts for wild populations of spittlebugs. Comparison of life cycles on three host plants showed that only 2.5% of nymphs completed their development on Zea mays L., 22.5% on Chloris gayana Kunth, and 95% on Brachiaria decumbens Stapf. All the above suggests that C. gayana and B. decumbens are able to sustain complete development, behaving like natural hosts; the latter species is superior for artificial colonies because a shorter developmental period, higher survivorship in nymphs, and longer lifespan of adults were observed. Zea mays did not allow proper development, causing high mortality instead. We also developed a new approach for small-scale breeding of N. entreriana, which will enable subsequent biological and behavioral studies on this important pest species.Fil: Foieri, Alvaro. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Microbiología y Zoología Agrícola; ArgentinaFil: Virla, Eduardo Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; Argentina. Fundación Miguel Lillo; ArgentinaFil: Maciá, Arnaldo. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. División Entomología; ArgentinaFil: Marino, Ana Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. División Entomología; Argentin
    corecore