1,163 research outputs found

    Stokesian Dynamics

    Get PDF
    Particles suspended or dispersed in a fluid medium occur in a wide variety of natural and man-made settings, e.g. slurries, composite materials, ceramics, colloids, polymers, proteins, etc. The central theoretical and practical problem is to understand and predict the macroscopic equilibrium and transport properties of these multiphase materials from their microstructural mechanics. The macroscopic properties might be the sedimentation or aggregation rate, self-diffusion coefficient, thermal conductivity, or rheology of a suspension of particles. The microstructural mechanics entails the Brownian, interparticle, external, and hydrodynamic forces acting on the particles, as well as their spatial and temporal distribution, which is commonly referred to as the microstructure. If the distribution of particles were given, as well as the location and motion of any boundaries and the physical properties of the particles and suspending fluid, one would simply have to solve (in principle, not necessarily in practice) a well-posed boundary-value problem to determine the behavior of the material. Averaging this solution over a large volume or over many different configurations, the macroscopic or averaged properties could be determined. The two key steps in this approach, the solution of the many-body problem and the determination of the microstructure, are formidable but essential tasks for understanding suspension behavior. This article discusses a new, molecular-dynamics-like approach, which we have named Stokesian dynamics, for dynamically simulating the behavior of many particles suspended or dispersed in a fluid medium. Particles in suspension may interact through both hydrodynamic and nonhydrodynamic forces, where the latter may be any type of Brownian, colloidal, interparticle, or external force. The simulation method is capable of predicting both static (i.e. configuration-specific) and dynamic microstructural properties, as well as macroscopic properties in either dilute or concentrated systems. Applications of Stokesian dynamics are widespread; problems of sedimentation, flocculation, diffusion, polymer rheology, and transport in porous media all fall within its domain. Stokesian dynamics is designed to provide the same theoretical and computational basis for multiphase, dispersed systems as does molecular dynamics for statistical theories of matter. This review focuses on the simulation method, not on the areas in which Stokesian dynamics can be used. For a discussion of some of these many different areas, the reader is referred to the excellent reviews and proceedings of topical conferences that have appeared (e.g. Batchelor 1976a, Dickinson 1983, Faraday Discussions 1983, 1987, Family & Landau 1984). Before embarking on a description of Stokesian dynamics, we pause here to discuss some of the relevant theoretical literature on suspensions, and dynamic simulation in general, in order to put Stokesian dynamics in perspective

    Translational and rotational temperatures of a 2D vibrated granular gas in microgravity

    Full text link
    We present an experimental study performed on a vibrated granular gas enclosed into a 2D rectangular cell. Experiments are realized in microgravity. High speed video recording and optical tracking allow to obtain the full kinematics (translation and rotation) of the particles. The inelastic parameters are retrieved from the experimental trajectories as well as the translational and rotational velocity distributions. We report that the experimental ratio of translational versus rotational temperature decreases to the density of the medium but increases with the driving velocity of the cell. These experimental results are compared with existing theories and we point out the differences observed. We also present a model which fairly predicts the equilibrium experimental temperatures along the direction of vibration.Comment: 14 pages, 11 figures, submitte

    Hydrodynamic stress on fractal aggregates of spheres

    Get PDF
    We calculate the average hydrodynamic stress on fractal aggregates of spheres using Stokesian dynamics. We find that for fractal aggregates of force-free particles, the stress does not grow as the cube of the radius of gyration, but rather as the number of particles in the aggregate. This behavior is only found for random aggregates of force-free particles held together by hydrodynamic lubrication forces. The stress on aggregates of particles rigidly connected by interparticle forces grows as the radius of gyration cubed. We explain this behavior by examining the transmission of the tension along connecting lines in an aggregate and use the concept of a persistance length in order to characterize this stress transmission within an aggregate

    La lettre entre expression et communication

    Get PDF

    Stokesian Dynamics simulation of Brownian suspensions

    Get PDF
    The non-equilibrium behaviour of concentrated colloidal dispersions is studied by Stokesian Dynamics, a general molecular-dynamics-like technique for simulating particles suspended in a viscous fluid. The simulations are of a suspension of monodisperse Brownian hard spheres in simple shear flow as a function of the Péclet number, Pe, which measures the relative importance of shear and Brownian forces. Three clearly defined regions of behaviour are revealed. There is first a Brownian-motion-dominated regime (Pe ≤ 1) where departures from equilibrium in structure and diffusion are small, but the suspension viscosity shear thins dramatically. When the Brownian and hydrodynamic forces balance (Pe ≈ 10), the dispersion forms a new ‘phase’ with the particles aligned in ‘strings’ along the flow direction and the strings are arranged hexagonally. This flow-induced ordering persists over a range of Pe and, while the structure and diffusivity now vary considerably, the rheology remains unchanged. Finally, there is a hydrodynamically dominated regime (Pe > 200) with a dramatic change in the long-time self-diffusivity and the rheology. Here, as the Péclet number increases the suspension shear thickens owing to the formation of large clusters. The simulation results are shown to agree well with experiment

    Dynamic simulation of hydrodynamically interacting suspensions

    Get PDF
    A general method for computing the hydrodynamic interactions among an infinite suspension of particles, under the condition of vanishingly small particle Reynolds number, is presented. The method follows the procedure developed by O'Brien (1979) for constructing absolutely convergent expressions for particle interactions. For use in dynamic simulation, the convergence of these expressions is accelerated by application of the Ewald summation technique. The resulting hydrodynamic mobility and/or resistance matrices correctly include all far-field non-convergent interactions. Near-field lubrication interactions are incorporated into the resistance matrix using the technique developed by Durlofsky, Brady & Bossis (1987). The method is rigorous, accurate and computationally efficient, and forms the basis of the Stokesian-dynamics simulation method. The method is completely general and allows such diverse suspension problems as self-diffusion, sedimentation, rheology and flow in porous media to be treated within the same formulation for any microstructural arrangement of particles. The accuracy of the Stokesian-dynamics method is illustrated by comparing with the known exact results for spatially periodic suspensions

    The Great Pleasures Don\u27t Come So Cheap: Material Objects, Pragmatic Behavior and Aesthetic Commitments in Willa Cather\u27s Fiction

    Get PDF
    Senior Project submitted to The Division of Multidisciplinary Studies of Bard College
    • …
    corecore