78 research outputs found

    Editorial

    Full text link
    [EN] The first number of JARTE, one step forward.It is difficult to find a single sector that is not agitated by the technological changes that are taking place. The development of Science and Technology is advancing by leaps and bounds, scientific discoveries along with the development of new products, new manufacturing techniques, improved communications, increasing industrial automation, among others are fundamental elements for economies worldwide to advance and develop better services that meet the needs of people.The Alcoy Campus of the Polytechnic University of Valencia is committed to the great challenge of integration towards the knowledge society. New knowledge is being generated on the campus, obtaining numerous results in research and transfer projects, together with the development of practical applications in companies and industrial sectors in the areas of chemical, electrical, manufacturing, materials, mechanical and textile engineering. These results and knowledge need an agile channel to reach potentially interested companies and researchers. The central objective of this international journal is to provide a venue for the dissemination of high quality, cutting edge research and technological developments in engineering, targeting a wide audience ranging from academia to industry.The production, exploitation and diffusion of knowledge are indispensable for the growth of society, that is why the journal JARTE becomes the appropriate alternative to publicize the projects developed both by the members of the Alcoy Campus and by any member of the scientific and industrial communities who wish to publicize their work.JARTE journal intends to become a reference in the diffusion in the fields of engineering and technology. The journal has a policy of quality articles, based on peer review by experts in the field. Two issues will be published annually, the first one in January and the second one in July. The issues of JARTE will offer a selection of original articles with a broad vision of the latest trends in engineering and technology.All articles published by JARTE are under the Creative Commons Attribution 4.0 International License in accordance with the framework proposed by the European Union. There is no charge for readers or authors due to institutional collaborations which promote open access papers in order to obtain widespread dissemination of the works.Finally, I would like to thank all the researchers and colleagues who worked to make the JARTE project a successful reality, both those who worked to turn their research into articles and those who have collaborated in the development of the journal in tasks such as editing, peer review, planning and layout so that the works could be published, and I encourage them to continue in this arduous task of disseminating the knowledge developed.Boronat Vitoria, T. (2020). Editorial. Journal of Applied Research in Technology & Engineering. 1(1). https://doi.org/10.4995/jarte.2020.13927OJS11

    Estudio y modelización de la procesabilidad mediante moldeo por inyección de materiales termoplásticos reciclados

    Full text link
    El proceso de inyección es un proceso de conformado de los materiales poliméricos termoplásticos que, en la actualidad, presenta una notable importancia económica y tecnológica, y cuyo estudio ha supuesto multitud de investigaciones relacionadas con la determinación de condiciones óptimas de proceso. Por otra parte, los materiales poliméricos reutilizados, procedentes de los desechos de producción como bebederos y canales de alimentación, representan una importante fuente de materias primas que pueden ser aprovechadas para la obtención de productos con calidades aceptables y con costes inferiores a los convencionales. Al beneficio económico que supone la reutilización de los desperdicios de inyección hay que sumar el ahorro que supone no realizar la gestión de residuos y el beneficio medioambiental consecuente. En la actualidad se mezclan polímeros para conseguir un nuevo material que combine las características de los materiales de partida. El principal problema que presenta esta práctica es que se desconocen las características del material resultante hasta que se ha realizado la mezcla y se ha caracterizado. Aglutinando los dos aspectos anteriores, la presente tesis tiene como objetivo la determinación de la influencia de las condiciones de procesado sobre las características reológicas del ABS, además se proponen dos modelos matemáticos, uno que permite determinar la viscosidad de un ABS reprocesado por inyección en función de las condiciones en las que ha sido procesado. El segundo modelo determina los parámetros que definen la viscosidad de una mezcla a partir de los parámetros de viscosidad de los materiales de partida. Para la realización de este estudio se han realizado reprocesados consecutivos de dos grados de ABS con diferentes índices de fluidez para simular los procesos de reutilización. De esta manera se dispone de todo el historial de procesado y se puede cuantificar más fácilmente las consecuencias de la degradación del material. El objetivo princiBoronat Vitoria, T. (2009). Estudio y modelización de la procesabilidad mediante moldeo por inyección de materiales termoplásticos reciclados [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/5024Palanci

    On the Use of Gallic Acid as a Potential Natural Antioxidant and Ultraviolet Light Stabilizer in Cast-Extruded Bio-Based High-Density Polyethylene Films

    Get PDF
    This study originally explores the use of gallic acid (GA) as a natural additive in bio-based high-density polyethylene (bio-HDPE) formulations. Thus, bio-HDPE was first melt-compounded with two different loadings of GA, namely 0.3 and 0.8 parts per hundred resin (phr) of biopolymer, by twin-screw extrusion and thereafter shaped into films using a cast-roll machine. The resultant bio-HDPE films containing GA were characterized in terms of their mechanical, morphological, and thermal performance as well as ultraviolet (UV) light stability to evaluate their potential application in food packaging. The incorporation of 0.3 and 0.8 phr of GA reduced the mechanical ductility and crystallinity of bio-HDPE, but it positively contributed to delaying the onset oxidation temperature (OOT) by 36.5 °C and nearly 44 °C, respectively. Moreover, the oxidation induction time (OIT) of bio-HDPE, measured at 210 °C, was delayed for up to approximately 56 and 240 min, respectively. Furthermore, the UV light stability of the bio-HDPE films was remarkably improved, remaining stable for an exposure time of 10 h even at the lowest GA content. The addition of the natural antioxidant slightly induced a yellow color in the bio-HDPE films and it also reduced their transparency, although a high contact transparency level was maintained. This property can be desirable in some packaging materials for light protection, especially UV radiation, which causes lipid oxidation in food products. Therefore, GA can successfully improve the thermal resistance and UV light stability of green polyolefins and will potentially promote the use of natural additives for sustainable food packaging applications

    The Effect of Varying Almond Shell Flour (ASF) Loading in Composites with Poly(Butylene Succinate (PBS) Matrix Compatibilized with Maleinized Linseed Oil (MLO)

    Full text link
    [EN] In this work poly(butylene succinate) (PBS) composites with varying loads of almond shell flour (ASF) in the 10-50 wt % were manufactured by extrusion and subsequent injection molding thus showing the feasibility of these combined manufacturing processes for composites up to 50 wt % ASF. A vegetable oil-derived compatibilizer, maleinized linseed oil (MLO), was used in PBS/ASF composites with a constant ASF to MLO (wt/wt) ratio of 10.0:1.5. Mechanical properties of PBS/ASF/MLO composites were obtained by standard tensile, hardness, and impact tests. The morphology of these composites was studied by field emission scanning electron microscopy-FESEM) and the main thermal properties were obtained by differential scanning calorimetry (DSC), dynamical mechanical-thermal analysis (DMTA), thermomechanical analysis (TMA), and thermogravimetry (TGA). As the ASF loading increased, a decrease in maximum tensile strength could be detected due to the presence of ASF filler and a plasticization effect provided by MLO which also provided a compatibilization effect due to the interaction of succinic anhydride polar groups contained in MLO with hydroxyl groups in both PBS (hydroxyl terminal groups) and ASF (hydroxyl groups in cellulose). FESEM study reveals a positive contribution of MLO to embed ASF particles into the PBS matrix, thus leading to balanced mechanical properties. Varying ASF loading on PBS composites represents an environmentally-friendly solution to broaden PBS uses at the industrial level while the use of MLO contributes to overcome or minimize the lack of interaction between the hydrophobic PBS matrix and the highly hydrophilic ASF filler.This research was supported by the Ministry of Economy, Industry and Competitiveness (MINECO) program number MAT2017-84909-C2-2-R.Liminana, P.; Quiles-Carrillo, L.; Boronat, T.; Balart, R.; Montanes, N. (2018). The Effect of Varying Almond Shell Flour (ASF) Loading in Composites with Poly(Butylene Succinate (PBS) Matrix Compatibilized with Maleinized Linseed Oil (MLO). Materials. 11(11):1-17. https://doi.org/10.3390/ma11112179S1171111Hottle, T. A., Bilec, M. M., & Landis, A. E. (2017). Biopolymer production and end of life comparisons using life cycle assessment. Resources, Conservation and Recycling, 122, 295-306. doi:10.1016/j.resconrec.2017.03.002Zhu, Y., Romain, C., & Williams, C. K. (2016). Sustainable polymers from renewable resources. Nature, 540(7633), 354-362. doi:10.1038/nature21001Gandini, A., & Lacerda, T. M. (2015). From monomers to polymers from renewable resources: Recent advances. Progress in Polymer Science, 48, 1-39. doi:10.1016/j.progpolymsci.2014.11.002Eichhorn, S. J., & Gandini, A. (2010). Materials from Renewable Resources. MRS Bulletin, 35(3), 187-193. doi:10.1557/mrs2010.650Fombuena, V., L, S.-N., MD, S., D, J., & R, B. (2012). Study of the Properties of Thermoset Materials Derived from Epoxidized Soybean Oil and Protein Fillers. Journal of the American Oil Chemists’ Society, 90(3), 449-457. doi:10.1007/s11746-012-2171-2Ferrero, B., Boronat, T., Moriana, R., Fenollar, O., & Balart, R. (2013). Green composites based on wheat gluten matrix and posidonia oceanica waste fibers as reinforcements. Polymer Composites, 34(10), 1663-1669. doi:10.1002/pc.22567Kondratowicz, F. Ł., & Ukielski, R. (2009). Synthesis and hydrolytic degradation of poly(ethylene succinate) and poly(ethylene terephthalate) copolymers. Polymer Degradation and Stability, 94(3), 375-382. doi:10.1016/j.polymdegradstab.2008.12.001Mochizuki, M., & Hirami, M. (1997). Structural Effects on the Biodegradation of Aliphatic Polyesters. Polymers for Advanced Technologies, 8(4), 203-209. doi:10.1002/(sici)1099-1581(199704)8:43.0.co;2-3Debuissy, T., Pollet, E., & Avérous, L. (2016). Synthesis of potentially biobased copolyesters based on adipic acid and butanediols: Kinetic study between 1,4- and 2,3-butanediol and their influence on crystallization and thermal properties. Polymer, 99, 204-213. doi:10.1016/j.polymer.2016.07.022Patel, M. K., Bechu, A., Villegas, J. D., Bergez-Lacoste, M., Yeung, K., Murphy, R., … Bryant, D. (2018). Second-generation bio-based plastics are becoming a reality - Non-renewable energy and greenhouse gas (GHG) balance of succinic acid-based plastic end products made from lignocellulosic biomass. Biofuels, Bioproducts and Biorefining, 12(3), 426-441. doi:10.1002/bbb.1849Huang, Z., Qian, L., Yin, Q., Yu, N., Liu, T., & Tian, D. (2018). Biodegradability studies of poly(butylene succinate) composites filled with sugarcane rind fiber. Polymer Testing, 66, 319-326. doi:10.1016/j.polymertesting.2018.02.003Puchalski, M., Szparaga, G., Biela, T., Gutowska, A., Sztajnowski, S., & Krucińska, I. (2018). Molecular and Supramolecular Changes in Polybutylene Succinate (PBS) and Polybutylene Succinate Adipate (PBSA) Copolymer during Degradation in Various Environmental Conditions. Polymers, 10(3), 251. doi:10.3390/polym10030251Fujimaki, T. (1998). Processability and properties of aliphatic polyesters, ‘BIONOLLE’, synthesized by polycondensation reaction. Polymer Degradation and Stability, 59(1-3), 209-214. doi:10.1016/s0141-3910(97)00220-6Číhal, P., Vopička, O., Pilnáček, K., Poustka, J., Friess, K., Hajšlová, J., … Dole, P. (2015). Aroma scalping characteristics of polybutylene succinate based films. Polymer Testing, 46, 108-115. doi:10.1016/j.polymertesting.2015.07.006Siracusa, V., Lotti, N., Munari, A., & Dalla Rosa, M. (2015). Poly(butylene succinate) and poly(butylene succinate-co-adipate) for food packaging applications: Gas barrier properties after stressed treatments. Polymer Degradation and Stability, 119, 35-45. doi:10.1016/j.polymdegradstab.2015.04.026Gigli, M., Fabbri, M., Lotti, N., Gamberini, R., Rimini, B., & Munari, A. (2016). Poly(butylene succinate)-based polyesters for biomedical applications: A review. European Polymer Journal, 75, 431-460. doi:10.1016/j.eurpolymj.2016.01.016Cheng, H.-H., Xiong, J., Xie, Z.-N., Zhu, Y.-T., Liu, Y.-M., Wu, Z.-Y., … Guo, Z.-X. (2017). Thrombin-Loaded Poly(butylene succinate)-Based Electrospun Membranes for Rapid Hemostatic Application. Macromolecular Materials and Engineering, 303(2), 1700395. doi:10.1002/mame.201700395Costa-Pinto, A. R., Martins, A. M., Castelhano-Carlos, M. J., Correlo, V. M., Sol, P. C., Longatto-Filho, A., … Neves, N. M. (2014). In vitro degradation and in vivo biocompatibility of chitosan–poly(butylene succinate) fiber mesh scaffolds. Journal of Bioactive and Compatible Polymers, 29(2), 137-151. doi:10.1177/0883911514521919Wu, D., Lin, D., Zhang, J., Zhou, W., Zhang, M., Zhang, Y., … Lin, B. (2011). Selective Localization of Nanofillers: Effect on Morphology and Crystallization of PLA/PCL Blends. Macromolecular Chemistry and Physics, 212(6), 613-626. doi:10.1002/macp.201000579Peponi, L., Sessini, V., Arrieta, M. P., Navarro-Baena, I., Sonseca, A., Dominici, F., … Kenny, J. M. (2018). Thermally-activated shape memory effect on biodegradable nanocomposites based on PLA/PCL blend reinforced with hydroxyapatite. Polymer Degradation and Stability, 151, 36-51. doi:10.1016/j.polymdegradstab.2018.02.019Dicker, M. P. M., Duckworth, P. F., Baker, A. B., Francois, G., Hazzard, M. K., & Weaver, P. M. (2014). Green composites: A review of material attributes and complementary applications. Composites Part A: Applied Science and Manufacturing, 56, 280-289. doi:10.1016/j.compositesa.2013.10.014Gurunathan, T., Mohanty, S., & Nayak, S. K. (2015). A review of the recent developments in biocomposites based on natural fibres and their application perspectives. Composites Part A: Applied Science and Manufacturing, 77, 1-25. doi:10.1016/j.compositesa.2015.06.007Lau, K., Hung, P., Zhu, M.-H., & Hui, D. (2018). Properties of natural fibre composites for structural engineering applications. Composites Part B: Engineering, 136, 222-233. doi:10.1016/j.compositesb.2017.10.038Chun, K. S., Yeng, C. M., & Hussiensyah, S. (2016). Green coupling agent for agro-waste based thermoplastic composites. Polymer Composites, 39(7), 2441-2450. doi:10.1002/pc.24228Panthapulakkal, S., & Sain, M. (2007). Agro-residue reinforced high-density polyethylene composites: Fiber characterization and analysis of composite properties. Composites Part A: Applied Science and Manufacturing, 38(6), 1445-1454. doi:10.1016/j.compositesa.2007.01.015Väisänen, T., Haapala, A., Lappalainen, R., & Tomppo, L. (2016). Utilization of agricultural and forest industry waste and residues in natural fiber-polymer composites: A review. Waste Management, 54, 62-73. doi:10.1016/j.wasman.2016.04.037Feng, Y.-H., Li, Y.-J., Xu, B.-P., Zhang, D.-W., Qu, J.-P., & He, H.-Z. (2013). Effect of fiber morphology on rheological properties of plant fiber reinforced poly(butylene succinate) composites. Composites Part B: Engineering, 44(1), 193-199. doi:10.1016/j.compositesb.2012.05.051Terzopoulou, Z. N., Papageorgiou, G. Z., Papadopoulou, E., Athanassiadou, E., Reinders, M., & Bikiaris, D. N. (2014). Development and study of fully biodegradable composite materials based on poly(butylene succinate) and hemp fibers or hemp shives. Polymer Composites, 37(2), 407-421. doi:10.1002/pc.23194Lee, J. M., Mohd Ishak, Z. A., Mat Taib, R., Law, T. T., & Ahmad Thirmizir, M. Z. (2012). Mechanical, Thermal and Water Absorption Properties of Kenaf-Fiber-Based Polypropylene and Poly(Butylene Succinate) Composites. Journal of Polymers and the Environment, 21(1), 293-302. doi:10.1007/s10924-012-0516-4Tserki, V., Matzinos, P., & Panayiotou, C. (2006). Novel biodegradable composites based on treated lignocellulosic waste flour as filler. Part II. Development of biodegradable composites using treated and compatibilized waste flour. Composites Part A: Applied Science and Manufacturing, 37(9), 1231-1238. doi:10.1016/j.compositesa.2005.09.004Yen, F.-S., Liao, H.-T., & Wu, C.-S. (2012). Characterization and biodegradability of agricultural residue-filled polyester ecocomposites. Polymer Bulletin, 70(5), 1613-1629. doi:10.1007/s00289-012-0862-3El Mechtali, F. Z., Essabir, H., Nekhlaoui, S., Bensalah, M. O., Jawaid, M., Bouhfid, R., & Qaiss, A. (2015). Mechanical and thermal properties of polypropylene reinforced with almond shells particles: Impact of chemical treatments. Journal of Bionic Engineering, 12(3), 483-494. doi:10.1016/s1672-6529(14)60139-6Essabir, H., Nekhlaoui, S., Malha, M., Bensalah, M. O., Arrakhiz, F. Z., Qaiss, A., & Bouhfid, R. (2013). Bio-composites based on polypropylene reinforced with Almond Shells particles: Mechanical and thermal properties. Materials & Design, 51, 225-230. doi:10.1016/j.matdes.2013.04.031García, A. M., García, A. I., Cabezas, M. Á. L., & Reche, A. S. (2015). Study of the Influence of the Almond Variety in the Properties of Injected Parts with Biodegradable Almond Shell Based Masterbatches. Waste and Biomass Valorization, 6(3), 363-370. doi:10.1007/s12649-015-9351-xQuiles-Carrillo, L., Montanes, N., Sammon, C., Balart, R., & Torres-Giner, S. (2018). Compatibilization of highly sustainable polylactide/almond shell flour composites by reactive extrusion with maleinized linseed oil. Industrial Crops and Products, 111, 878-888. doi:10.1016/j.indcrop.2017.10.062Valdés García, A., Ramos Santonja, M., Sanahuja, A. B., & Selva, M. del C. G. (2014). Characterization and degradation characteristics of poly(ε-caprolactone)-based composites reinforced with almond skin residues. Polymer Degradation and Stability, 108, 269-279. doi:10.1016/j.polymdegradstab.2014.03.011Liminana, P., Garcia-Sanoguera, D., Quiles-Carrillo, L., Balart, R., & Montanes, N. (2018). Development and characterization of environmentally friendly composites from poly(butylene succinate) (PBS) and almond shell flour with different compatibilizers. Composites Part B: Engineering, 144, 153-162. doi:10.1016/j.compositesb.2018.02.031Fu, S.-Y., Feng, X.-Q., Lauke, B., & Mai, Y.-W. (2008). Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate–polymer composites. Composites Part B: Engineering, 39(6), 933-961. doi:10.1016/j.compositesb.2008.01.002Kim, H.-S., Lee, B.-H., Lee, S., Kim, H.-J., & Dorgan, J. R. (2010). Enhanced interfacial adhesion, mechanical, and thermal properties of natural flour-filled biodegradable polymer bio-composites. Journal of Thermal Analysis and Calorimetry, 104(1), 331-338. doi:10.1007/s10973-010-1098-9Li, Y., Zhang, J., Cheng, P., Shi, J., Yao, L., & Qiu, Y. (2014). Helium plasma treatment voltage effect on adhesion of ramie fibers to polybutylene succinate. Industrial Crops and Products, 61, 16-22. doi:10.1016/j.indcrop.2014.06.039Sepe, R., Bollino, F., Boccarusso, L., & Caputo, F. (2018). Influence of chemical treatments on mechanical properties of hemp fiber reinforced composites. Composites Part B: Engineering, 133, 210-217. doi:10.1016/j.compositesb.2017.09.030Shaniba, V., Sreejith, M. P., Aparna, K. B., Jinitha, T. V., & Purushothaman, E. (2017). Mechanical and thermal behavior of styrene butadiene rubber composites reinforced with silane-treated peanut shell powder. Polymer Bulletin, 74(10), 3977-3994. doi:10.1007/s00289-017-1931-4Phua, Y. J., Chow, W. S., & Mohd Ishak, Z. A. (2013). Reactive processing of maleic anhydride-grafted poly(butylene succinate) and the compatibilizing effect on poly(butylene succinate) nanocomposites. Express Polymer Letters, 7(4), 340-354. doi:10.3144/expresspolymlett.2013.31Zhu, N., Ye, M., Shi, D., & Chen, M. (2017). Reactive compatibilization of biodegradable poly(butylene succinate)/Spirulina microalgae composites. Macromolecular Research, 25(2), 165-171. doi:10.1007/s13233-017-5025-9Chieng, B., Ibrahim, N., Then, Y., & Loo, Y. (2014). Epoxidized Vegetable Oils Plasticized Poly(lactic acid) Biocomposites: Mechanical, Thermal and Morphology Properties. Molecules, 19(10), 16024-16038. doi:10.3390/molecules191016024Orue, A., Eceiza, A., & Arbelaiz, A. (2018). Preparation and characterization of poly(lactic acid) plasticized with vegetable oils and reinforced with sisal fibers. Industrial Crops and Products, 112, 170-180. doi:10.1016/j.indcrop.2017.11.011Balart, J. F., Fombuena, V., Fenollar, O., Boronat, T., & Sánchez-Nacher, L. (2016). Processing and characterization of high environmental efficiency composites based on PLA and hazelnut shell flour (HSF) with biobased plasticizers derived from epoxidized linseed oil (ELO). Composites Part B: Engineering, 86, 168-177. doi:10.1016/j.compositesb.2015.09.063Garcia-Garcia, D., Ferri, J. M., Montanes, N., Lopez-Martinez, J., & Balart, R. (2016). Plasticization effects of epoxidized vegetable oils on mechanical properties of poly(3-hydroxybutyrate). Polymer International, 65(10), 1157-1164. doi:10.1002/pi.5164Sarwono, A., Man, Z., & Bustam, M. A. (2012). Blending of Epoxidised Palm Oil with Epoxy Resin: The Effect on Morphology, Thermal and Mechanical Properties. Journal of Polymers and the Environment, 20(2), 540-549. doi:10.1007/s10924-012-0418-5Carbonell-Verdu, A., Garcia-Garcia, D., Dominici, F., Torre, L., Sanchez-Nacher, L., & Balart, R. (2017). PLA films with improved flexibility properties by using maleinized cottonseed oil. European Polymer Journal, 91, 248-259. doi:10.1016/j.eurpolymj.2017.04.013Garcia-Garcia, D., Fenollar, O., Fombuena, V., Lopez-Martinez, J., & Balart, R. (2016). Improvement of Mechanical Ductile Properties of Poly(3-hydroxybutyrate) by Using Vegetable Oil Derivatives. Macromolecular Materials and Engineering, 302(2), 1600330. doi:10.1002/mame.201600330Ferri, J. M., Garcia-Garcia, D., Sánchez-Nacher, L., Fenollar, O., & Balart, R. (2016). The effect of maleinized linseed oil (MLO) on mechanical performance of poly(lactic acid)-thermoplastic starch (PLA-TPS) blends. Carbohydrate Polymers, 147, 60-68. doi:10.1016/j.carbpol.2016.03.082Ren, M., Song, J., Song, C., Zhang, H., Sun, X., Chen, Q., … Mo, Z. (2005). Crystallization kinetics and morphology of poly(butylene succinate-co-adipate). Journal of Polymer Science Part B: Polymer Physics, 43(22), 3231-3241. doi:10.1002/polb.20539Ye, H.-M., Chen, X.-T., Liu, P., Wu, S.-Y., Jiang, Z., Xiong, B., & Xu, J. (2017). Preparation of Poly(butylene succinate) Crystals with Exceptionally High Melting Point and Crystallinity from Its Inclusion Complex. Macromolecules, 50(14), 5425-5433. doi:10.1021/acs.macromol.7b00656Ostafi, M.-F., Dinulică, F., & Nicolescu, V.-N. (2016). Physical properties and structural features of common walnut (Juglans regia L.) wood: A case-study / Physikalische Eigenschaften und strukturelle Charakteristika des Holzes der Walnuß (Juglans regia L.): Eine Fallstudie. Die Bodenkultur: Journal of Land Management, Food and Environment, 67(2), 105-120. doi:10.1515/boku-2016-0010Luís, R. C. G., Nisgoski, S., & Klitzke, R. J. (2018). Effect of Steaming on the Colorimetric Properties of Eucalyptus saligna Wood. Floresta e Ambiente, 25(1). doi:10.1590/2179-8087.101414Lopes, J. de O., Garcia, R. A., Latorraca, J. V. de F., & Nascimento, A. M. do. (2014). Alteração da cor da madeira de teca por tratamento térmico. Floresta e Ambiente, 21(4), 521-534. doi:10.1590/2179-8087.013612Yang, H.-S., Kim, H.-J., Park, H.-J., Lee, B.-J., & Hwang, T.-S. (2006). Water absorption behavior and mechanical properties of lignocellulosic filler–polyolefin bio-composites. Composite Structures, 72(4), 429-437. doi:10.1016/j.compstruct.2005.01.013Xu, X., Zhang, M., Qiang, Q., Song, J., & He, W. (2015). Study on the performance of the acetylated bamboo fiber/PBS composites by molecular dynamics simulation. Journal of Composite Materials, 50(7), 995-1003. doi:10.1177/0021998315615690Wu, C.-S., Hsu, Y.-C., Liao, H.-T., Yen, F.-S., Wang, C.-Y., & Hsu, C.-T. (2014). Characterization and biocompatibility of chestnut shell fiber-based composites with polyester. Journal of Applied Polymer Science, 131(17), n/a-n/a. doi:10.1002/app.40730Saeed, U., Nawaz, M., & Al-Turaif, H. (2018). Wood flour reinforced biodegradable PBS/PLA composites. Journal of Composite Materials, 52(19), 2641-2650. doi:10.1177/0021998317752227Luo, X., Li, J., Feng, J., Yang, T., & Lin, X. (2014). Mechanical and thermal performance of distillers grains filled poly(butylene succinate) composites. Materials & Design, 57, 195-200. doi:10.1016/j.matdes.2013.12.056Ljungberg, N., & Wesslén, B. (2002). The effects of plasticizers on the dynamic mechanical and thermal properties of poly(lactic acid). Journal of Applied Polymer Science, 86(5), 1227-1234. doi:10.1002/app.11077Quiles-Carrillo, L., Blanes-Martínez, M. M., Montanes, N., Fenollar, O., Torres-Giner, S., & Balart, R. (2018). Reactive toughening of injection-molded polylactide pieces using maleinized hemp seed oil. European Polymer Journal, 98, 402-410. doi:10.1016/j.eurpolymj.2017.11.039Quiles-Carrillo, L., Montanes, N., Garcia-Garcia, D., Carbonell-Verdu, A., Balart, R., & Torres-Giner, S. (2018). Effect of different compatibilizers on injection-molded green composite pieces based on polylactide filled with almond shell flour. Composites Part B: Engineering, 147, 76-85. doi:10.1016/j.compositesb.2018.04.017Calabia, B., Ninomiya, F., Yagi, H., Oishi, A., Taguchi, K., Kunioka, M., & Funabashi, M. (2013). Biodegradable Poly(butylene succinate) Composites Reinforced by Cotton Fiber with Silane Coupling Agent. Polymers, 5(1), 128-141. doi:10.3390/polym5010128Frollini, E., Bartolucci, N., Sisti, L., & Celli, A. (2013). Poly(butylene succinate) reinforced with different lignocellulosic fibers. Industrial Crops and Products, 45, 160-169. doi:10.1016/j.indcrop.2012.12.013Faulstich de Paiva, J. M., & Frollini, E. (2006). Unmodified and Modified Surface Sisal Fibers as Reinforcement of Phenolic and Lignophenolic Matrices Composites: Thermal Analyses of Fibers and Composites. Macromolecular Materials and Engineering, 291(4), 405-417. doi:10.1002/mame.200500334Wang, G., Guo, B., Xu, J., & Li, R. (2011). Rheology, crystallization behaviors, and thermal stabilities of poly(butylene succinate)/pristine multiwalled carbon nanotube composites obtained by melt compounding. Journal of Applied Polymer Science, 121(1), 59-67. doi:10.1002/app.33222Dumazert, L., Rasselet, D., Pang, B., Gallard, B., Kennouche, S., & Lopez-Cuesta, J.-M. (2017). Thermal stability and fire reaction of poly(butylene succinate) nanocomposites using natural clays and FR additives. Polymers for Advanced Technologies, 29(1), 69-83. doi:10.1002/pat.4090Chen, G.-X., & Yoon, J.-S. (2005). Thermal stability of poly(l-lactide)/poly(butylene succinate)/clay nanocomposites. Polymer Degradation and Stability, 88(2), 206-212. doi:10.1016/j.polymdegradstab.2004.06.005Ferrero, B., Fombuena, V., Fenollar, O., Boronat, T., & Balart, R. (2014). Development of natural fiber-reinforced plastics (NFRP) based on biobased polyethylene and waste fibers from Posidonia oceanica seaweed. Polymer Composites, 36(8), 1378-1385. doi:10.1002/pc.23042Fuqua, M. A., Chevali, V. S., & Ulven, C. A. (2012). Lignocellulosic byproducts as filler in polypropylene: Comprehensive study on the effects of compatibilization and loading. Journal of Applied Polymer Science, 127(2), 862-868. doi:10.1002/app.3782

    Evaluation of the engineering performance of different bio-based aliphatic homopolyamide tubes prepared by profile extrusion

    Full text link
    [EN] In the present study, three different commercial bio-based polyamides (bio-PAs), namely polyamide 610 (PA610), polyamide 1010 (PA1010), and polyamide 1012 (PA1012), were processed by profile extrusion with an annular die. These aliphatic homopolyamides, also known as "green nylons", are industrially produced by polycondensation reaction of diamines and dicarboxylic acids that are partially or fully obtained from naturally occurring castor oil. The profile-extruded bio-PA tubes were characterized and compared in terms of their thermal, thermomechanical, and mechanical properties and also water uptake. Resultant comparative evaluation indicated that both the methylene-to-amide (CH2/CONH) ratio and the crystallinity degree of the bio-PAs played the main role in determining the performance of the tubes. Due to significant differences in their CH2/CONH ratio, the PA610 tubes showed the highest thermal properties while the tubes made of PA1012 presented the highest flexibility and lowest water uptake. Interestingly, the fully bio-based PA1010 tubes offered the most balanced and enhanced engineering performance, which was ascribed to the high crystallinity achieved during profile extrusion. The here-developed bio-PA tubes can fulfil demanding technical requirements and these also certainly represent a sustainable answer to the rising demand for new high-performance biopolymers for engineering applications. (C) 2017 Elsevier Ltd. All rights reserved.This research was supported by the Ministry of Economy and Competitiveness program number MAT2014-59242-C2-1-R and AG12015-63855-C2-1-R and Generalitat Valenciana (GV) program number GV/2014/008. Quiles-Carrillo wants to thank GV for financial support through a FPI grant (ACIF/2016/182) and the Spanish Ministry of Education, Culture, and Sports (MECD) for his FPU grant (FPU15/03812).Quiles-Carrillo, L.; Montanes, N.; Boronat, T.; Balart, R.; Torres-Giner, S. (2017). Evaluation of the engineering performance of different bio-based aliphatic homopolyamide tubes prepared by profile extrusion. Polymer Testing. 61:421-429. https://doi.org/10.1016/j.polymertesting.2017.06.004S4214296

    Injection-molded parts of fully bio-based polyamide 1010 strengthened with waste derived slate fibers pretreated with glycidyl- and amino-silane coupling agents

    Full text link
    [EN] Fully bio-based polyamide 1010 (PA1010) was melt-compounded with 15 wt% of slate fibers (SFs), which were obtained from wastes of the tile industry, and the resultant composites were shaped into parts by injection molding. The as-received fibers were first thermally treated and afterwards subjected to surface modification with glycidyl- and amino-silane coupling agents to improve the interfacial adhesion of the composites. The incorporation of both the glycidyl-silane slate fiber (G-SF) and amino-silane slate fiber (A-SF) remarkably improved the mechanical strength of PA1010, inducing a 3-fold increase in tensile modulus. The composite parts prepared with the silanized SFs also presented higher thermal stability and improved thermomechanical resistance. Water uptake was reduced below 1%, encouragingly suggesting that the mechanical performance of the PA1010/SF composites would be scarcely affected by atmospheric humidity. G-SF was the most effective in strengthening PA1010. This improvement was ascribed to the higher reactivity of the cyclic anhydride in the coupled silane with the terminal hydroxyl groups of the biopolymer.The Spanish Ministry of Science, Innovation and Universities MICIU) is acknowledged for funding through the MAT2017-84909-C2-2-R and AGL2015-63855-C2-1-R projects. Quiles-Carrillo holds a FPU grant (FPU15/03812) from the Spanish Ministry of Education, Culture, and Sports (MECD) whereas Torres-Giner is a recipient of a Juan de la Cierva-Incorporacion contract (IJCI-2016-29675) from MICIU.Quiles-Carrillo, L.; Boronat, T.; Montanes, N.; Balart, R.; Torres-Giner, S. (2019). Injection-molded parts of fully bio-based polyamide 1010 strengthened with waste derived slate fibers pretreated with glycidyl- and amino-silane coupling agents. Polymer Testing. 77. https://doi.org/10.1016/j.polymertesting.2019.04.022S7

    Effects of Lignocellulosic Fillers from Waste Thyme on Melt Flow Behavior and Processability of Wood Plastic Composites (WPC) with Biobased Poly(ethylene) by Injection Molding

    Full text link
    [EN] Wood-like plastic composites were manufactured with a thermoplastic matrix polymer from renewable resources, i.e. high-density poly(ethylene) from bioethanol and a lignocellulosic filler obtained as a byproduct of the industrial distillation of thyme. The potential manufacturing of these composites by injection molding was studied. For this purpose, an in depth study of the effects of the lignocellulosic loading (comprised between 10 and 50 wt%) on the rheological properties of these composites was carried out by using capillary rheometry and model fitting with the Cross-WLF rheological model. In addition, a side by side comparison of the experimental results and those obtained by simulations with MoldFlow® was provided. In addition, the values of the pressure in the cavity and in the sprue were measured and collected by two selectively mounted pressure sensors and the results were compared with those predicted by MoldFlow® with the inputs provided by the Cross-WLF fitting model. The results showed a remarkable increase in viscosity with increasing lignocellulosic filler content, which has a negative effect on overall processability. This phenomenon specifically intense at low shear rates. However, this phenomenon could be potentially minimized using high shear rates because of the shear thinning effect of pseudoplastic fluids. Both the experimental and simulated results suggest the need of higher pressures to fill the cavity with these WPC, specifically for those with high filler content of up to 50 wt%. The results of the study indicate that melt viscosity is highly linked to the cavity pressure which is the dominant factor determining the quality of the final product in plastic injection molding.This research was supported by the Ministry of Economy and Competitiveness – MINECO through the grant number MAT2014-59242-C2-1-R. Authors also wish to thank “Licores Sinc, S.A.” for kindly supplying the thyme wastes.Montanes, N.; Quiles-Carrillo, L.; Ferrándiz Bou, S.; Fenollar, O.; Boronat, T. (2019). Effects of Lignocellulosic Fillers from Waste Thyme on Melt Flow Behavior and Processability of Wood Plastic Composites (WPC) with Biobased Poly(ethylene) by Injection Molding. Journal of Polymers and the Environment. https://doi.org/10.1007/s10924-019-01388-0SKoivuranta E et al (2017) Improved durability of lignocellulose-polypropylene composites manufactured using twin-screw extrusion. Compos Part A 101:265–272Tufan M et al (2016) Technological and thermal properties of thermoplastic composites filled with heat-treated alder wood. BioResources 11(2):3153–3164Puglia D, Fortunati E, Kenny JM, Editors (2016) Extraction of lignocellulosic materials from waste products. In: Multifunctional polymeric nanocomposites based on cellulosic reinforcements. Elsevier, Oxford, p 408Huang L et al (2016) Sustainable use of coffee husks for reinforcing polyethylene composites. J Polym Environ 26:48–58Fabiyi JS et al (2008) Wood plastic composites weathering: visual appearance and chemical changes. Polym Degrad Stab 93(8):1405–1414Ruiz-Navajas Y et al (2013) In vitro antioxidant and antifungal properties of essential oils obtained from aromatic herbs endemic to the southeast of Spain. J Food Prot 76(7):1218–1225Díaz-García MC et al (2015) Production of an anthocyanin-rich food colourant from Thymus moroderi and its application in foods. J Sci Food Agric 95(6):1283–1293Bhullar SK, Kaya B, Jun MB-G (2015) Development of bioactive packaging structure using melt electrospinning. J Polym Environ 23(3):416–423Cicala G et al (2016) Investigation on structure and thermomechanical processing of biobased polymer blends. J Polym Environ 25:750–758George J et al (1996) Melt rheological behaviour of short pineapple fibre reinforced low density polyethylene composites. Polymer 37(24):5421–5431Joseph PV et al (2002) Melt rheological behaviour of short sisal fibre reinforced polypropylene composites. J Thermoplast Compos Mater 15(2):89–114Kalaprasad G et al (2003) Melt rheological behavior of intimately mixed short sisal-glass hybrid fiber-reinforced low-density polyethylene composites. I. Untreated fibers. J Appl Polym Sci 89(2):432–442Kalaprasad G, Thomas S (2003) Melt rheological behavior of intimately mixed short sisal-glass hybrid fiber-reinforced low-density polyethylene composites. II. Chemical modification. J Appl Polym Sci 89(2):443–450Kumar RP et al (2000) Morphology and melt rheological behaviour of short-sisal-fibre-reinforced SBR composites. Compos Sci Technol 60(9):1737–1751Li T, Wolcott M (2005) Rheology of wood plastics melt. Part 1. Capillary rheometry of HDPE filled with maple. Polym Eng Sci 45(4):549–559Li T, Wolcott M (2006) Rheology of wood plastics melt, part 2: effects of lubricating systems in HDPE/maple composites. Polym Eng Sci 46(4):464–473Li TQ, Wolcott MP (2004) Rheology of HDPE-wood composites. I. Steady state shear and extensional flow. Composites Part A 35(3):303–311Mohanty S, Nayak SK (2007) Rheological characterization of jute/HDPE composites. In: Zhang D et al. (eds) Advanced materials and processing Iv, p 279Ou R et al (2014) Effect of wood cell wall composition on the rheological properties of wood particle/high density polyethylene composites. Compos Sci Technol 93:68–75Hristov V, Vlachopoulos J (2007) Influence of coupling agents on melt flow behavior of natural fiber composites. Macromol Mater Eng 292(5):608–619Mohanty S, Nayak SK (2007) Rheological characterization of HDPE/sisal fiber composites. Polym Eng Sci 47(10):1634–1642Koszkul J, Nabialek J (2004) Viscosity models in simulation of the filling stage of the injection molding process. J Mater Process Technol 157–158:183–187Mazzanti V, Mollica F (2016) In-process measurements of flow characteristics of wood plastic composites. J Polym Environ 25:1044–1050Montanes N et al (2017) Processing and characterization of environmentally friendly composites from biobased polyethylene and natural fillers from thyme herbs. J Polym Environ 26:1218–1230Shenoy A, Saini D (1984) Rheological models for unified curves for simplified design calculations in polymer processing. Rheologica Acta 23(4):368–377Bagley E (1957) End corrections in the capillary flow of polyethylene. J Appl Phys 28(5):624–627Rabinowitsch B (1929) Über die Viskosität und Elastizität von Solen. Z Physik Chem A 145:1–26Cross MM (1965) Rheology of non-newtonian fluids—a new flow equation for pseudoplastic systems. J Colloid Sci 20(5):417Williams ML, Landel RF, Ferry JD (1955) Mechanical properties of substances of high molecular weight. 19. the temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. J Am Chem Soc 77(14):3701–3707Carneiro OS, Maia JM (2000) Rheological behavior of (short) carbon fiber/thermoplastic composites. Part I: the influence of fiber type, processing conditions and level of incorporation. Polym Compos 21(6):960–969Crowson RJ, Folkes MJ, Bright PF (1980) Rheology of short glass fiber-reinforced thermoplastics and its application to injection molding I. Fiber motion and viscosity measurement. Polym Eng Sci 20(14):925–933Goldsmith H (1967) Rheology theory and application, Mason SG (eds) Academic Press, p 85Reig MJ, Segui VJ, Zamanillo JD (2005) Rheological behavior modeling of recycled ABS/PC blends applied to injection molding process. J Polym Eng 25(5):435–457Părpăriţă E et al (2014) Structure–morphology–mechanical properties relationship of some polypropylene/lignocellulosic composites. Mater Des 56:763–772Kurt M et al (2009) Experimental investigation of plastic injection molding: assessment of the effects of cavity pressure and mold temperature on the quality of the final products. Mater Des 30(8):3217–322

    The Potential of an Itaconic Acid Diester as EnvironmentallyFriendly Plasticizer for Injection-Molded Polylactide Parts

    Full text link
    [EN] This work reports on the use of dibutyl itaconate (DBI) as an environmentallyfriendly plasticizer for polylactide (PLA) with different proportions of DBI inthe 2.5¿20 wt% (weight content) range. A co-rotating twin-screw extrusionprocess followed by injection molding is employed for the manufacturing ofthe samples. The results show that the plasticized PLA formulation with10 wt% DBI offers the most balanced overall properties, with a noticeableincrease in the elongation at break from 4.6% (neat PLA) up to 322%, with atensile modulus of 1572 MPa, and a tensile strength of 23.8 MPa. In the caseof 15 and 20 wt% DBI formulations, PLA reaches the saturation point with nomore increase in the elongation at break and a clear decrease in the tensilemodulus. DBI also decreases the glass transition temperature (Tg)from61.3°C (neat PLA) down to 23.4°C for plasticized PLA formulation containing20 wt% DBI, thus showing the high plasticization efficiency of DBI.J.I.-M. wants to thank FPU19/01759 grant funded by MCIN/AEI/10.13039/501100011033 and by ESF Investing in your future. J.G.-C. wants to thank Generalitat Valenciana-GVA, for his FPI grant (ACIF/2021/185) and grant FPU20/01732 funded by MCIN/AEI/10.13039/501100011033 and by ESF Investing in your future. Also, Microscopy Services at UPV are also acknowledged by their help in collecting and analyzing images. This research is a part of the grant PID2020-116496RB-C22 funded by MCIN/AEI/10.13039/501100011033, and the grant AICO/2021/025 funded by Generalitat Valenciana-GVAIvorra-Martínez, J.; Peydro, MA.; Gómez-Caturla, J.; Boronat, T.; Balart, R. (2022). The Potential of an Itaconic Acid Diester as EnvironmentallyFriendly Plasticizer for Injection-Molded Polylactide Parts. Macromolecular Materials and Engineering. 307(12):1-15. https://doi.org/10.1002/mame.2022003601153071

    Optimization of the Curing and Post-Curing Conditions for the Manufacturing of Partially Bio-Based Epoxy Resins with Improved Toughness

    Full text link
    [EN] This research deals with the influence of different curing and post-curing temperatures on the mechanical and thermomechanical properties as well as the gel time of an epoxy resin prepared by the reaction of diglycidyl ether of bisphenol A (DGEBA) with an amine hardener and a reactive diluent derived from plants at 31 wt %. The highest performance was obtained for the resins cured at moderate-to-high temperatures, that is, 80 degrees C and 90 degrees C, which additionally showed a significant reduction in the gel time. This effect was ascribed to the formation of a stronger polymer network by an extended cross-linking process of the polymer chains during the resin manufacturing. Furthermore, post-curing at either 125 degrees C or 150 degrees C yielded thermosets with higher mechanical strength and, more interestingly, improved toughness, particularly for the samples previously cured at moderate temperatures. In particular, the partially bio-based epoxy resin cured at 80 degrees C and post-cured at 150 degrees C for 1 h and 30 min, respectively, showed the most balanced performance due to the formation of a more homogeneous cross-linked structure.This research was supported by the Spanish Ministry of Science, Innovation, and Universities (MICIU) through the MAT2017-84909-C2-2-R program number. D.L. acknowledges Universitat Politècnica de València (UPV) for the grant received through the PAID-01-18 program. L.Q.-C. wants to thank the Generalitat Valenciana (GVA) for his FPI grant (ACIF/2016/182) and the Spanish Ministry of Education, Culture, and Sports (MECD) for his FPU grant (FPU15/03812). S.T.-G. is a recipient of a Juan de la Cierva¿Incorporación contract (IJCI-2016-29675) from MICIU.Lascano-Aimacaña, DS.; Quiles-Carrillo, L.; Torres-Giner, S.; Boronat, T.; Montanes, N. (2019). Optimization of the Curing and Post-Curing Conditions for the Manufacturing of Partially Bio-Based Epoxy Resins with Improved Toughness. Polymers. 11(8):1-15. https://doi.org/10.3390/polym11081354S115118Jin, F.-L., Li, X., & Park, S.-J. (2015). Synthesis and application of epoxy resins: A review. Journal of Industrial and Engineering Chemistry, 29, 1-11. doi:10.1016/j.jiec.2015.03.026Yu, S., Li, X., Guo, X., Li, Z., & Zou, M. (2019). Curing and Characteristics of N,N,N′,N′-Tetraepoxypropyl-4,4′-Diaminodiphenylmethane Epoxy Resin-Based Buoyancy Material. Polymers, 11(7), 1137. doi:10.3390/polym11071137Njuguna, J., Pielichowski, K., & Alcock, J. R. (2007). Epoxy-Based Fibre Reinforced Nanocomposites. Advanced Engineering Materials, 9(10), 835-847. doi:10.1002/adem.200700118Holbery, J., & Houston, D. (2006). Natural-fiber-reinforced polymer composites in automotive applications. JOM, 58(11), 80-86. doi:10.1007/s11837-006-0234-2Jin, N. J., Seung, I., Choi, Y. S., & Yeon, J. (2017). Prediction of early-age compressive strength of epoxy resin concrete using the maturity method. Construction and Building Materials, 152, 990-998. doi:10.1016/j.conbuildmat.2017.07.066Yin, Y.-B., Yang, Q.-S., Wang, S.-L., Gao, H.-D., He, Y.-W., & Li, X.-L. (2019). Formation of CO2 bubbles in epoxy resin coatings: A DFT study. Journal of Molecular Graphics and Modelling, 86, 192-198. doi:10.1016/j.jmgm.2018.10.018Jin, F.-L., & Park, S.-J. (2008). Thermomechanical behavior of epoxy resins modified with epoxidized vegetable oils. Polymer International, 57(4), 577-583. doi:10.1002/pi.2280Kim, Kim, Hwang, & Kim. (2019). Embedded Based Real-Time Monitoring in the High-Pressure Resin Transfer Molding Process for CFRP. Applied Sciences, 9(9), 1795. doi:10.3390/app9091795Rudawska, A. (2019). The Impact of the Seasoning Conditions on Mechanical Properties of Modified and Unmodified Epoxy Adhesive Compounds. Polymers, 11(5), 804. doi:10.3390/polym11050804Enns, J. B., & Gillham, J. K. (1983). Effect of the extent of cure on the modulus, glass transition, water absorptio, and density of an amine-cured epoxy. Journal of Applied Polymer Science, 28(9), 2831-2846. doi:10.1002/app.1983.070280914Ivankovic, M., Incarnato, L., Kenny, J. M., & Nicolais, L. (2003). Curing kinetics and chemorheology of epoxy/anhydride system. Journal of Applied Polymer Science, 90(11), 3012-3019. doi:10.1002/app.12976Zilg, C., Mülhaupt, R., & Finter, J. (1999). Morphology and toughness/stiffness balance of nanocomposites based upon anhydride-cured epoxy resins and layered silicates. Macromolecular Chemistry and Physics, 200(3), 661-670. doi:10.1002/(sici)1521-3935(19990301)200:33.0.co;2-4Zheng, T., Wang, X., Lu, C., Zhang, X., Ji, Y., Bai, C., … Qiao, Y. (2019). Studies on Curing Kinetics and Tensile Properties of Silica-Filled Phenolic Amine/Epoxy Resin Nanocomposite. Polymers, 11(4), 680. doi:10.3390/polym11040680Guermazi, N., Haddar, N., Elleuch, K., & Ayedi, H. F. (2014). Investigations on the fabrication and the characterization of glass/epoxy, carbon/epoxy and hybrid composites used in the reinforcement and the repair of aeronautic structures. Materials & Design (1980-2015), 56, 714-724. doi:10.1016/j.matdes.2013.11.043Park, S.-J., Seo, M.-K., & Lee, J.-R. (2000). Isothermal cure kinetics of epoxy/phenol-novolac resin blend system initiated by cationic latent thermal catalyst. Journal of Polymer Science Part A: Polymer Chemistry, 38(16), 2945-2956. doi:10.1002/1099-0518(20000815)38:163.0.co;2-6Mostovoy, S., & Ripling, E. J. (1966). Fracture toughness of an epoxy system. Journal of Applied Polymer Science, 10(9), 1351-1371. doi:10.1002/app.1966.070100913Fu, K., Xie, Q., LÜ, F., Duan, Q., Wang, X., Zhu, Q., & Huang, Z. (2019). Molecular Dynamics Simulation and Experimental Studies on the Thermomechanical Properties of Epoxy Resin with Different Anhydride Curing Agents. Polymers, 11(6), 975. doi:10.3390/polym11060975Kenyon, A. S., & Nielsen, L. E. (1969). Characterization of Network Structure of Epoxy Resins by Dynamic Mechanical and Liquid Swelling Tests. Journal of Macromolecular Science: Part A - Chemistry, 3(2), 275-295. doi:10.1080/10601326908053811Czub, P. (2006). Application of Modified Natural Oils as Reactive Diluents for Epoxy Resins. Macromolecular Symposia, 242(1), 60-64. doi:10.1002/masy.200651010Park, Y. T., Qian, Y., Chan, C., Suh, T., Nejhad, M. G., Macosko, C. W., & Stein, A. (2014). Epoxy Toughening with Low Graphene Loading. Advanced Functional Materials, 25(4), 575-585. doi:10.1002/adfm.201402553Okabe, H., Nishimura, H., Hara, K., & Kai, S. (1997). Gelation and Glass Transition in Thermosetting Process of Epoxy Resin. Progress of Theoretical Physics Supplement, 126, 119-122. doi:10.1143/ptps.126.119Quiles-Carrillo, L., Montanes, N., Lagaron, J. M., Balart, R., & Torres-Giner, S. (2018). On the use of acrylated epoxidized soybean oil as a reactive compatibilizer in injection-molded compostable pieces consisting of polylactide filled with orange peel flour. Polymer International, 67(10), 1341-1351. doi:10.1002/pi.5588Torres-Giner, S., Montanes, N., Fenollar, O., García-Sanoguera, D., & Balart, R. (2016). Development and optimization of renewable vinyl plastisol/wood flour composites exposed to ultraviolet radiation. Materials & Design, 108, 648-658. doi:10.1016/j.matdes.2016.07.037Khot, S. N., Lascala, J. J., Can, E., Morye, S. S., Williams, G. I., Palmese, G. R., … Wool, R. P. (2001). Development and application of triglyceride-based polymers and composites. Journal of Applied Polymer Science, 82(3), 703-723. doi:10.1002/app.1897Jaillet, F., Desroches, M., Auvergne, R., Boutevin, B., & Caillol, S. (2013). New biobased carboxylic acid hardeners for epoxy resins. European Journal of Lipid Science and Technology, 115(6), 698-708. doi:10.1002/ejlt.201200363Stemmelen, M., Lapinte, V., Habas, J.-P., & Robin, J.-J. (2015). Plant oil-based epoxy resins from fatty diamines and epoxidized vegetable oil. European Polymer Journal, 68, 536-545. doi:10.1016/j.eurpolymj.2015.03.062Pethrick, R. A., Hollins, E. A., McEwan, I., Pollock, E. A., Hayward, D., & Johncock, P. (1996). Effect of Cure Temperature on the Structure and Water Absorption of Epoxy/Amine Thermosets. Polymer International, 39(4), 275-288. doi:10.1002/(sici)1097-0126(199604)39:43.0.co;2-iBarton, J. M., Hamerton, I., Howlin, B. J., Jones, J. R., & Liu, S. (1998). Studies of cure schedule and final property relationships of a commercial epoxy resin using modified imidazole curing agents. Polymer, 39(10), 1929-1937. doi:10.1016/s0032-3861(97)00372-8Kotnarowska, D. (1999). Influence of ultraviolet radiation and aggressive media on epoxy coating degradation. Progress in Organic Coatings, 37(3-4), 149-159. doi:10.1016/s0300-9440(99)00070-3Imanaka, M., Liu, X., & Kimoto, M. (2017). Comparison of fracture behavior between acrylic and epoxy adhesives. International Journal of Adhesion and Adhesives, 75, 31-39. doi:10.1016/j.ijadhadh.2017.02.011Lascano, D., Quiles-Carrillo, L., Balart, R., Boronat, T., & Montanes, N. (2019). Kinetic Analysis of the Curing of a Partially Biobased Epoxy Resin Using Dynamic Differential Scanning Calorimetry. Polymers, 11(3), 391. doi:10.3390/polym11030391Lambert, C., Larroque, M., Subirats, J. T., & Gérard, J. (1998). Food‐contact epoxy resin: Co‐variation between migration and degree of cross‐linking. Part II. Food Additives and Contaminants, 15(3), 318-328. doi:10.1080/02652039809374647Bueche, F. (1957). Tensile strength of rubbers. Journal of Polymer Science, 24(106), 189-200. doi:10.1002/pol.1957.1202410603Levita, G., De Petris, S., Marchetti, A., & Lazzeri, A. (1991). Crosslink density and fracture toughness of epoxy resins. Journal of Materials Science, 26(9), 2348-2352. doi:10.1007/bf01130180Min, B.-G., Hodgkin, J. H., & Stachurski, Z. H. (1993). The dependence of fracture properties on cure temperature in a DGEBA/DDS epoxy system. Journal of Applied Polymer Science, 48(7), 1303-1312. doi:10.1002/app.1993.070480719Turk, M., Hamerton, I., & Ivanov, D. S. (2017). Ductility potential of brittle epoxies: Thermomechanical behaviour of plastically-deformed fully-cured composite resins. Polymer, 120, 43-51. doi:10.1016/j.polymer.2017.05.052Gupta, V. B., & Brahatheeswaran, C. (1991). Molecular packing and free volume in crosslinked epoxy networks. Polymer, 32(10), 1875-1884. doi:10.1016/0032-3861(91)90379-wKarkanas, P. I., & Partridge, I. K. (2000). Cure modeling and monitoring of epoxy/amine resin systems. I. Cure kinetics modeling. Journal of Applied Polymer Science, 77(7), 1419-1431. doi:10.1002/1097-4628(20000815)77:73.0.co;2-nWoo, E. M., & Seferis, J. C. (1990). Cure kinetics of epoxy/anhydride thermosetting matrix systems. Journal of Applied Polymer Science, 40(78), 1237-1256. doi:10.1002/app.1990.070400713Karger-Kocsis, J., Grishchuk, S., Sorochynska, L., & Rong, M. Z. (2013). Curing, gelling, thermomechanical, and thermal decomposition behaviors of anhydride-cured epoxy (DGEBA)/epoxidized soybean oil compositions. Polymer Engineering & Science, 54(4), 747-755. doi:10.1002/pen.23605Dyakonov, T., Chen, Y., Holland, K., Drbohlav, J., Burns, D., Velde, D. V., … Stevenson, W. T. K. (1996). Thermal analysis of some aromatic amine cured model epoxy resin systems—I: Materials synthesis and characterization, cure and post-cure. Polymer Degradation and Stability, 53(2), 217-242. doi:10.1016/0141-3910(96)00085-7Chang, T. D., Carr, S. H., & Brittain, J. O. (1982). Studies of epoxy resin systems: Part B: Effect of crosslinking on the physical properties of an epoxy resin. Polymer Engineering and Science, 22(18), 1213-1220. doi:10.1002/pen.760221807Wu, C.-S. (1992). Influence of post-curing and temperature effects on bulk density, glass transition and stress-strain behaviour of imidazole-cured epoxy network. Journal of Materials Science, 27(11), 2952-2959. doi:10.1007/bf0115410

    Assessment of the mechanical and thermal properties of injection-molded poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)/hydroxyapatite nanoparticles parts for use in bone tissue engineering

    Get PDF
    In the present study, poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) [P(3HB-co-3HHx)] was reinforced with hydroxyapatite nanoparticles (nHA) to produce novel nanocomposites for potential uses in bone reconstruction. Contents of nHA in the 2.5–20 wt % range were incorporated into P(3HB-co-3HHx) by melt compounding and the resulting pellets were shaped into parts by injection molding. The addition of nHA improved the mechanical strength and the thermomechanical resistance of the microbial copolyester parts. In particular, the addition of 20 wt % of nHA increased the tensile (Et) and flexural (Ef) moduli by approximately 64% and 61%, respectively. At the highest contents, however, the nanoparticles tended to agglomerate, and the ductility, toughness, and thermal stability of the parts also declined. The P(3HB-co-3HHx) parts filled with nHA contents of up to 10 wt % matched more closely the mechanical properties of the native bone in terms of strength and ductility when compared with metal alloys and other biopolymers used in bone tissue engineering. This fact, in combination with their biocompatibility, enables the development of nanocomposite parts to be applied as low-stress implantable devices that can promote bone reconstruction and be reabsorbed into the human body.L.Q.-C. wants to thank GVA for his FPI grant (ACIF/2016/182) and the Spanish Ministry of Education, Culture, and Sports (MECD) for his FPU grant (FPU15/03812). S.T.-G. acknowledges MICI for his Juan de la Cierva–Incorporación contract (IJCI-2016-29675). J.I.-M. wants to thank Universitat Politècnica de València for his FPI grant (PAID-2019- SP20190011). Microscopy services of the Universitat Politècnica de València (UPV) are acknowledged for their help in collecting and analyzing the FESEM images. Authors also thank Ercros S.A. for kindly supplying ErcrosBio® PH110.This research work was funded by the Spanish Ministry of Science and Innovation (MICI) project numbers RTI2018-097249-B-C21 and MAT2017-84909-C2-2-R and the POLISABIO program with grant number 2019-A02
    corecore