15 research outputs found

    A viscous active shell theory of the cell cortex

    Full text link
    The cell cortex is a thin layer beneath the plasma membrane that gives animal cells mechanical resistance and drives most of their shape changes, from migration, division to multicellular morphogenesis. It is mainly composed of actin filaments, actin binding proteins, and myosin molecular motors. Constantly stirred by myosin motors and under fast renewal, this material may be well described by viscous and contractile active-gel theories. Here, we assume that the cortex is a thin viscous shell with non-negligible curvature and use asymptotic expansions to find the leading-order equations describing its shape dynamics, starting from constitutive equations for an incompressible viscous active gel. Reducing the three-dimensional equations leads to a Koiter-like shell theory, where both resistance to stretching and bending rates are present. Constitutive equations are completed by a kinematical equation describing the evolution of the cortex thickness with turnover. We show that tension and moment resultants depend not only on the shell deformation rate and motor activity but also on the active turnover of the material, which may also exert either contractile or extensile stress. Using the finite-element method, we implement our theory numerically to study two biological examples of drastic cell shape changes: osmotic shocks and cell division. Our work provides a numerical implementation of thin active viscous layers and a generic theoretical framework to develop shell theories for slender active biological structures.Comment: 37 pages, 13 figures, 1 appendi

    Effets collectifs dans la contraction musculaire et adhésion cellulaire

    Get PDF
    Two biological systems, a half-sarcomere of a skeletal muscle and an adhesive cluster of a crawling keratocyte, are considered in parallel because of the deep similarity in their structure and functionality. Their passive response can be modeled by a large number of multi-stable units coupled through long-range interactions, frustrated by quenched disorder and exposed to thermal noise. In such systems, long-range interactions lead to synchronization, defying temporal and spatial fluctuations. We use a mean-field description to obtain analytic results and elucidate the remarkable ensemble-dependence of the mechanical behavior of such systems in the thermodynamic limit. Despite important structural differences between muscle cross-bridges and adhesive binders, one can identify a common underlying spin glass structure, which we fully exploit in this work. Our study suggests that the muscle machinery is fine-tuned to operate near criticality, and we argue that in this respect the quenched disorder, reflecting here steric incommensuration, may be functional. We use the analogy between cell detachment and thermal fracture of disordered solids to study the statistics of fluctuations during cellular adhesion. We relate the obtained results to recent observations of intermittent behavior involved in cell debonding, also suggesting near-criticality. In addition to the study of the equilibrium properties of adhesive clusters, we also present the first results on their kinetic behavior in the presence of time-dependent loading.Deux systèmes biologiques distincts, les muscles squelettiques et les sites d'adhésion de cellules kératocytes en mouvement, sont considérés dans un même cadre en raison de la similitude profonde de leur structure et de leur fonctionnalité. La réponse passive de l'un et de l'autre peut être modélisée à l'aide d'un grand nombre d'unités multi-stables couplées par des interactions à longue portée, et exposées à un désordre spatial fixé et un bruit thermique/mécanique. Les interactions à longue portée dans de tels systèmes conduisent à une synchronisation malgré les fluctuations temporelles et spatiales. Bien que les deux systèmes biologiques considérés présentent des différences structurelles importantes, nous montrons que l'on peut identifier une structure de verre de spin sous-jacente commune. À la lumière de cette analogie, ces systèmes vivants semblent être proches de points critiques et, à cet égard, le désordre gelé, reflétant l’incommensurabilité stérique des unités parallèles, peut être fonctionnel. Un autre paramètre important fixant la réponse est la rigidité interne du système qui couple les unités entre elles

    Effets collectifs dans la contraction musculaire et adhésion cellulaire

    No full text
    Deux systèmes biologiques distincts, les muscles squelettiques et les sites d'adhésion de cellules kératocytes en mouvement, sont considérés dans un même cadre en raison de la similitude profonde de leur structure et de leur fonctionnalité. La réponse passive de l'un et de l'autre peut être modélisée à l'aide d'un grand nombre d'unités multi-stables couplées par des interactions à longue portée, et exposées à un désordre spatial fixé et un bruit thermique/mécanique. Les interactions à longue portée dans de tels systèmes conduisent à une synchronisation malgré les fluctuations temporelles et spatiales. Bien que les deux systèmes biologiques considérés présentent des différences structurelles importantes, nous montrons que l'on peut identifier une structure de verre de spin sous-jacente commune. À la lumière de cette analogie, ces systèmes vivants semblent être proches de points critiques et, à cet égard, le désordre gelé, reflétant l’incommensurabilité stérique des unités parallèles, peut être fonctionnel. Un autre paramètre important fixant la réponse est la rigidité interne du système qui couple les unités entre elles.Two biological systems, a half-sarcomere of a skeletal muscle and an adhesive cluster of a crawling keratocyte, are considered in parallel because of the deep similarity in their structure and functionality. Their passive response can be modeled by a large number of multi-stable units coupled through long-range interactions, frustrated by quenched disorder and exposed to thermal noise. In such systems, long-range interactions lead to synchronization, defying temporal and spatial fluctuations. We use a mean-field description to obtain analytic results and elucidate the remarkable ensemble-dependence of the mechanical behavior of such systems in the thermodynamic limit. Despite important structural differences between muscle cross-bridges and adhesive binders, one can identify a common underlying spin glass structure, which we fully exploit in this work. Our study suggests that the muscle machinery is fine-tuned to operate near criticality, and we argue that in this respect the quenched disorder, reflecting here steric incommensuration, may be functional. We use the analogy between cell detachment and thermal fracture of disordered solids to study the statistics of fluctuations during cellular adhesion. We relate the obtained results to recent observations of intermittent behavior involved in cell debonding, also suggesting near-criticality. In addition to the study of the equilibrium properties of adhesive clusters, we also present the first results on their kinetic behavior in the presence of time-dependent loading

    Equilibrium unzipping at finite temperature

    No full text
    International audienceWe study thermally activated unzipping, which is modeled as a debonding process. The system is modeled as a parallel bundle of elastically interacting breakable units loaded through a series spring. Using equilibrium statistical mechanics, we compute the reversible response of this mechanical system under quasi-static driving. Depending on the stiffness of the series spring, the system exhibits either ductile behavior, characterized by noncoopera-tive debonding, or brittle behavior, with a highly correlated detachment of the whole bundle. We show that the ductile to brittle transition is of the second order and that it can also be controlled by temperature

    Functionality of Disorder in Muscle Mechanics

    No full text
    International audienc

    On the modeling of fiber dispersion in fiber-reinforced elastic materials

    No full text
    When an isotropic material is subject to a uniaxial tension, the principal strain transverse to the direction of applied load is always negative. However, in fiber reinforced materials the transverse principal strain can change its sign as the load increases, passing through the zero-points, known as perversions. We investigate how the number of perversions in a material reinforced by two symmetrically aligned families of distributed fibers depends both on the degree of fiber dispersion and the model used for fiber dispersion. Angular integration and three variants of the generalized structure tensor approach are considered and discussed. The study of perversions clearly demonstrates the qualitative difference between these approaches in the case of high dispersion of fibers. The results suggest that this difference is primarily due to the way compressive fibers are modeled

    Functionality of Disorder in Muscle Mechanics

    No full text
    corecore