22 research outputs found

    An intensity recovery algorithm (IRA) for minimizing the edge effect of LIDAR data

    Get PDF
    The terrestrial laser scanner is an equipment developed for surveying applications and is also used for many other purposes due to its ability to acquire 3D data quickly. However, before intensity data can be analyzed, it must be processed in order to minimize the edge or border effect, one of the most serious problems of LIDAR’s intensity data. Our research has focused on characterizing the edge effect behavior as well as to develop an algorithm to minimize edge effect distortion automatically (IRA). The IRA showed to be effective recovering 35.71% of points distorted by the edge effect, providing significant improvements and promising results for the development of applications based on TLS data intensity to many studies

    Divulgação de dados ambientais e socioeconômicos na internet usando um modelo baseado no uso de ferramentas livres

    Get PDF
    The article presents a model based on the use of free tools aiming at the publication of socioeconomic and environmental data and dissemination of information on the internet. The structure of this model makes it possible to present information as tables, graphs, pictures or web maps. The choice of a particular presentation format is determined according to the goals of the developer. As a result of this work the user will create a virtual geographic database for the generation of static information and interactive web maps. The main tools used are the Spring geographic information system, MySQL relational database, PHP script and Apache HTTP server.Key words: Web mapping, free tools, Spring Web, Geographic Information System.Um modelo baseado no uso de ferramentas livres é apresentado, visando à publicação de dados socioeconômicos e ambientais e divulgação de informações na internet. A estrutura deste modelo permite que as informações sejam apresentadas sob a forma de tabelas, gráficos, fotos ou mapas para a web. A escolha de um determinado formato de apresentação da informação é determinada de acordo com os objetivos do desenvolvedor. Como resultado do trabalho, o usuário criará um banco de dados geográficos virtual para gerar informações estáticas e mapas interativos para a web. As principais ferramentas utilizadas foram o sistema de informações geográficas Spring, banco de dados relacional MySQL, PHP script e o servidor Apache HTTP.Palavras-chave: mapeamento via Web, ferramentas livres, Spring Web, Sistema de Informação Geográfica

    Improving geometric road design through a virtual reality visualization technique

    Get PDF
    Traffic accidents could often be avoided with more in-depth studies of traffic and the geometric layout, using, for example, driving simulators to simulate traffic conditions. The objective of this study is to qualitatively evaluate three types of visualization techniques for examining a road project (one in a 2D printed project and the others using a driving simulator in a virtual immersion system and screen visualization). The results were evaluated by the Analytic Hierarchy Process-AHP method, used to establish different weights for the analyzed variables. For this, a questionnaire was applied to undergraduate students in Civil Engineering to compare the techniques. The results show that the immersive simulation visualization has sufficient quality and can contribute to the validation of geometric designs

    Laser scanner terrestre na caracterização de alvos florestais

    Get PDF
    O resultado do escaneamento de um Laser Scanner Terrestre (LST) é uma nuvem de pontos com coordenadas geométricas (X, Y, Z), informações de cor (R, G, B) provenientes de uma câmera fotográfica acoplada ao equipamento e, ainda, a informação do retorno da intensidade do pulso laser (I). Esses sistemas de varredura possuem algumas características como, por exemplo, sua rapidez na aquisição de informações, registro de cenas em 3D e coleta de informações sem contato direto que se aplicam de forma importante nas análises florestais. Contudo, a grande vantagem da utilização de um LST na área florestal é a possibilidade de caracterizar alvos remotamente de forma rápida e não destrutiva. Assim, este trabalho teve como objetivo principal avaliar os dados de intensidade de retorno do laser provenientes de um sistema LST para a caracterização de alvos florestais. Metodologicamente foram realizados experimentos controlados que envolveram as seguintes etapas: calibração radiométrica do LST; avaliação da influência da distância nos dados de intensidade de retorno do laser e; análise do efeito de borda em imageamento de alvos florestais (considerado um dos principais problemas que afeta os dados intensidade de retorno quando se utiliza um LST). O equipamento utilizado durante os experimentos foi um laser scanner modelo Ilris 3D da Optech que trabalha no intervalo do infravermelho médio com comprimento de onde de 1535 nm. Os resultados mostraram que para esse comprimento de onda os alvos florestais devem ser imageados a uma distância maior ou igual a 5m e o processamento dos dados com resolução radiométrica de 8 bits foi mais adequado, pois proporcionou uma caracterização geométrica do alvo com efeito visual de melhor qualidade se comparado com o processamento de 16 bits. Os resultados dos experimentos realizados sobre o efeito de borda possibilitaram identificar dois tipos de distorções que ocorrem em dados de nuvem de pontos adquiridos com um LST. O primeiro afetou os valores de intensidade de retorno do laser e o segundo criou um efeito que deslocou os pontos no espaço. Para minimizar este efeito foi desenvolvido um algoritmo, o IRA (Intensity Recovery Algorithm), que possibilitou recuperar automaticamente os valores de intensidade de retorno do laser minimizando em até 35,7% o efeito de borda nos imageamentos do alvo estudado na pesquisa. Assim para o uso de um LST, na caracterização geométrica de alvos florestais, é necessário desenvolver modelos de calibração da intensidade de retorno do pulso laser, pois os sistemas LST são distintos em termos de faixa do espectro eletromagnético que operam. Por fim, no que tange ao efeito de borda concluiu-se que o algoritmo IRA necessita ser aprimorado com outras abordagens computacionais e matemáticas que poderão ser desenvolvidos em estudos futuros.The result of the scanning of a terrestrial laser scanner (TLS) is a point cloud with geometric coordinates (X, Y, Z), color information (R, G, B) from a camera coupled to the equipment, and also the return information of intensity of the laser pulse (I). These scanning systems have some characteristics, for example, its speed in acquiring information, and of 3D scenes with record of data remotely which applies significantly in the forestry analysis. The advantage of using a TLS in the forestry area is the possibility of remote acquisition of data enabling a fast and non-destructive work. This work aimed to evaluate the laser return intensity data from a TLS system for the characterization of forest targets. Methodologically were performed controlled experiments involving the following steps: radiometric calibration of TLS; evaluating the influence of the distance in the laser return intensity data and; analysis of the edge effect in imaging forest targets (considered one of the main problems that affect the data intensity return when using a TLS). The equipment used during the experiments was a laser scanner Ilris Optech 3D model that works in the mid-infrared range with wavelength of 1535 nm. The results showed that for this wavelength forest targets should be imaged at a distance greater than or equal to 5m and processing of the radiometric data with 8-bit resolution is more suitable because it provided a geometric characteristics of the target with better visual effect quality compared with the 16-bit processing. The results of the experiments on the edge effect possible to identify two types of distortions that occur in cloud data points acquired with a LST. The first affect the laser return intensity values and the second set offset an effect that the points in space. To minimize this effect an algorithm, the IRA (Intensity Recovery Algorithm), was developed which enabled automatically retrieve the laser return intensity values up to 35.7% of minimizing the edge effect in the target imaging surveys studied in research. Thus for use of an TLS, the geometrical characterization of forest targets, it is necessary to develop calibration models of the return laser pulse intensity, for TLS systems are different in terms of the electromagnetic spectrum operating range. Finally, with respect to the edge effect it was concluded that the IRA algorithm needs to be enhanced with other computational and mathematical approaches that may be developed in future studies

    Laser scanner terrestre na caracterização de alvos florestais

    Get PDF
    O resultado do escaneamento de um Laser Scanner Terrestre (LST) é uma nuvem de pontos com coordenadas geométricas (X, Y, Z), informações de cor (R, G, B) provenientes de uma câmera fotográfica acoplada ao equipamento e, ainda, a informação do retorno da intensidade do pulso laser (I). Esses sistemas de varredura possuem algumas características como, por exemplo, sua rapidez na aquisição de informações, registro de cenas em 3D e coleta de informações sem contato direto que se aplicam de forma importante nas análises florestais. Contudo, a grande vantagem da utilização de um LST na área florestal é a possibilidade de caracterizar alvos remotamente de forma rápida e não destrutiva. Assim, este trabalho teve como objetivo principal avaliar os dados de intensidade de retorno do laser provenientes de um sistema LST para a caracterização de alvos florestais. Metodologicamente foram realizados experimentos controlados que envolveram as seguintes etapas: calibração radiométrica do LST; avaliação da influência da distância nos dados de intensidade de retorno do laser e; análise do efeito de borda em imageamento de alvos florestais (considerado um dos principais problemas que afeta os dados intensidade de retorno quando se utiliza um LST). O equipamento utilizado durante os experimentos foi um laser scanner modelo Ilris 3D da Optech que trabalha no intervalo do infravermelho médio com comprimento de onde de 1535 nm. Os resultados mostraram que para esse comprimento de onda os alvos florestais devem ser imageados a uma distância maior ou igual a 5m e o processamento dos dados com resolução radiométrica de 8 bits foi mais adequado, pois proporcionou uma caracterização geométrica do alvo com efeito visual de melhor qualidade se comparado com o processamento de 16 bits. Os resultados dos experimentos realizados sobre o efeito de borda possibilitaram identificar dois tipos de distorções que ocorrem em dados de nuvem de pontos adquiridos com um LST. O primeiro afetou os valores de intensidade de retorno do laser e o segundo criou um efeito que deslocou os pontos no espaço. Para minimizar este efeito foi desenvolvido um algoritmo, o IRA (Intensity Recovery Algorithm), que possibilitou recuperar automaticamente os valores de intensidade de retorno do laser minimizando em até 35,7% o efeito de borda nos imageamentos do alvo estudado na pesquisa. Assim para o uso de um LST, na caracterização geométrica de alvos florestais, é necessário desenvolver modelos de calibração da intensidade de retorno do pulso laser, pois os sistemas LST são distintos em termos de faixa do espectro eletromagnético que operam. Por fim, no que tange ao efeito de borda concluiu-se que o algoritmo IRA necessita ser aprimorado com outras abordagens computacionais e matemáticas que poderão ser desenvolvidos em estudos futuros.The result of the scanning of a terrestrial laser scanner (TLS) is a point cloud with geometric coordinates (X, Y, Z), color information (R, G, B) from a camera coupled to the equipment, and also the return information of intensity of the laser pulse (I). These scanning systems have some characteristics, for example, its speed in acquiring information, and of 3D scenes with record of data remotely which applies significantly in the forestry analysis. The advantage of using a TLS in the forestry area is the possibility of remote acquisition of data enabling a fast and non-destructive work. This work aimed to evaluate the laser return intensity data from a TLS system for the characterization of forest targets. Methodologically were performed controlled experiments involving the following steps: radiometric calibration of TLS; evaluating the influence of the distance in the laser return intensity data and; analysis of the edge effect in imaging forest targets (considered one of the main problems that affect the data intensity return when using a TLS). The equipment used during the experiments was a laser scanner Ilris Optech 3D model that works in the mid-infrared range with wavelength of 1535 nm. The results showed that for this wavelength forest targets should be imaged at a distance greater than or equal to 5m and processing of the radiometric data with 8-bit resolution is more suitable because it provided a geometric characteristics of the target with better visual effect quality compared with the 16-bit processing. The results of the experiments on the edge effect possible to identify two types of distortions that occur in cloud data points acquired with a LST. The first affect the laser return intensity values and the second set offset an effect that the points in space. To minimize this effect an algorithm, the IRA (Intensity Recovery Algorithm), was developed which enabled automatically retrieve the laser return intensity values up to 35.7% of minimizing the edge effect in the target imaging surveys studied in research. Thus for use of an TLS, the geometrical characterization of forest targets, it is necessary to develop calibration models of the return laser pulse intensity, for TLS systems are different in terms of the electromagnetic spectrum operating range. Finally, with respect to the edge effect it was concluded that the IRA algorithm needs to be enhanced with other computational and mathematical approaches that may be developed in future studies
    corecore