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Abstract
The terrestrial laser scanner is an equipment developed for surveying applications and is 
also used for many other purposes due to its ability to acquire 3D data quickly. However, 
before intensity data can be analyzed, it must be processed in order to minimize the 
edge or border effect, one of the most serious problems of LIDAR’s intensity data. Our 
research has focused on characterizing the edge effect behavior as well as to develop an 
algorithm to minimize edge effect distortion automatically (IRA). The IRA showed to be 
effective recovering 35.71% of points distorted by the edge effect, providing significant 
improvements and promising results for the development of applications based on TLS data 
intensity to many studies.
Keywords: Intensity recovery algorithm, classification edge effect, LIDAR, remote 
sensing, terrestrial laser scanning.

Introduction
In the last decade, terrestrial laser scanning (TLS) and profiling have been consolidated 
to provide one of the most effective technologies for 3D geospatial data acquisition 
[Vosselman and Maas, 2010; Shan and Toth, 2009]. Geometric information obtained from 
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laser scanners is commonly used in many distinct research domains to estimate volumes, 
to characterize geometric features, to measure deformations, and to detect changes like 
accumulation or loss of material [Scaioni et al., 2013; Lindenbergh and Pietrzyk, 2015; 
Longoni et al., 2016]. In each field, methodological approaches have been developed to 
cope with specific features and problems [Pirotti et al., 2013]. There are many studies about 
methodologies based on geometric coordinates data of TLS but few studies have provided 
methodological and operational approaches to use TLS intensity data [Eitel et al., 2010; 
Burton et al., 2011; Inocencio et al., 2014; Pavi et al., 2015].
The aim of this research is to recover laser intensity data distorted by the so called ‘edge 
effect’ [Eitel et al., 2010], in the case data acquisition was operated using TLS. The basic 
consideration is that laser intensity data can be used to obtain information regarding water 
content or other characteristics of target objects, provided that the edge effect has been 
totally or partially corrected. The edge effect occurs in two main cases. The first case is 
when the laser beam is divided by an object and returns as a combination of reflected 
signals from at least two objects. An example is the edge of a leaf plus an object behind the 
leaf. The signal returning to the sensor provides information that merges data from the leaf 
and data from the target behind the leaf. The second case is when part of the laser beam 
collides with the target and part of radiation is lost. In other words, only a fraction of the 
laser beam returns to the sensor or is too weak to trigger a signal.
Although the problem of the edge effect has been already reported in the literature, no one 
provided satisfactory solutions to eliminate or minimize its consequences on laser intensity 
data. As intensity data are related to physical and chemical characteristics of the target 
object [Inocencio et al., 2014], the reduction of the edge effect is beneficial for research that 
intends to infer, correlate or interpret these data. The research described here contributes 
to understand of the edge effect and to provide an algorithm that automatically mitigates 
its consequences. This achievement has been made possible by the development of the 
intensity recovery algorithm (IRA), which can be used in a wide number of applications 
belonging to different research domains.

Terrestrial Laser Scanning
Laser light has important properties that distinguish it from ordinary light, such as coherence, 
wavelength, spectral purity, directivity and divergence of the beam, modulation of power 
and polarization of light. Terrestrial laser scanning (TLS), also referred to as ground-based 
LIDAR (Light Detection and Ranging), is based on the emission of a narrow laser beam 
toward the target object, which pulses with high repetition frequency. The scanner can 
directly measures the round-trip time (ToF - Time-of-Flight) of the pulses between the 
sensor and the target before calculating the position of each point. As an alternative, the 
phase-shift of a modulated laser signal can be measured to derive the distance from the 
sensor to the object. Figure 1 schematically illustrates data acquisition performed with a 
TLS.
Most TLS instruments output a data file containing coordinates of points in a 3D space (X, 
Y, Z), the returned laser intensity value I, and, if available, the RGB values recorded by a 
digital camera. These data result in a record of X, Y, Z, I, R, G, B per each point that is stored 
as a text or binary file. The intensity data may be also used to obtain information about the 
objects characteristics (classification) as a remote sensor [Burton et al., 2011]. Based on 
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Colwell’s concept [1983] the intensity definition is the variation of the flux of energy per 
unit by solid angle irradiated in the same direction from the point source. In other words, 
intensity is the quantity of energy that passes through a unit area per second, per steradian 
[Colwell, 1983].

Figure 1 - Schematic representation of geometric 
coordinates (X, Y, Z) and intensity data acquisition 
(I). Adapted Reshetiuk [2009].

One of the problems affecting the intensity data is the edge effect. The main cause of the 
edge effect is due to the outline of the object generated when laser pulses partially collide 
with the target being scanned (i.e., stop colliding with the target and start colliding with 
the background). Figure 2 shows a rectangle with circular holes, where the blue area is the 
internal portion of the object and the red area is the border of the object.

Figure 2 - Representation of an object with circular 
holes. The red color represents the areas where the 
edge effect will appear.

The edge effect will take place at the edge of the target and can be understood as the 
difference between the recorded intensity and the expected intensity after colliding with 
the target. This effect occurs due to the variable diameter of the laser beam, which is 
proportional to the distance between the laser scanner and the target, and is referred to as 
laser divergence or beam divergence [Popescu, 2011].
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Material and Methods
The TLS instrument adopted for this study was an ILRIS 3D Optech, whose active ranging 
sensor operated based on ToF. This instrument also incorporates a digital camera that 
is installed off-axis, causing parallax misalignment between point cloud data and color 
information in the case of objects located at a distance closer than 35-40 m from the 
instrument.

Modeling the edge effect
In order to acquire intensity data including an edge effect generated under controlled 
conditions, a specifically designed single target, a topographic tripod, a planar white board, 
and a laser scanner ILRIS 3D have been used to set up the experimental facility (Fig. 3). 
The target was made of a wooden board with eight holes, whose number has been chosen 
arbitrarily. To this end, a white board has been positioned behind the main target in order to 
collect the laser returns after collision with both the wooden target and the white board. The 
target was scanned at two distances from the instrument, i.e., 5m and 10m, respectively. 
Table 1 shows the spacing between points, the number of points collected, and the time 
necessary to complete data acquisition. After completion of the measurement stage, the 
intensity data of the point cloud was processed using 8-bits (256 gray levels) and the edge 
effect has been modeled.

Figure 3 - Experiment set up to investigate the edge effect 
in a controlled environment.
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Table 1 - Properties of scans gathered in the controlled 
experimental setup.

Resolution (mm) Number of points
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m
0.5 480,244

1.0 120,150

1.5 53,550

2.0 30,082

3.0 13,500

4.0 7,605

5.0 4,860

7.0 2,522

10.0 1,224

D
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e 
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0.6 387,138

1.0 139,944

1.6 54,912

2.0 34,986

3.0 15,572

4.0 8,772

5.0 5,658

7.0 2,940

10.0 1,449

The Intensity Recovery Algorithm (IRA)
Thanks to the experimental facility described in the previous subsection, the edge effect 
could be generated in a controlled environment. The results provided enough information 
in order to understand how this effect occurs and how it affects the intensity data. In order 
to correct them, the Intensity Recovery Algorithm (IRA) was developed. It works in two 
steps: a) segmentation and b) intensity recovery. 
Initially, a clustering k-means algorithm [MacQueen, 1967] is used to split the intensity 
data values into different groups. The algorithm groups those points that are distorted by 
the edge effect into a specific class that can be used to recover correct intensity data. The 
clustering based on k-means technique accomplishes the classification by partitioning the 
data set in a k number of groups [Gan et al., 2007]. Initially k centroids were defined as 3 
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groups based on the clustering algorithm. Each point of the cloud has an intensity value that 
is associated with the recorded intensity value returning from the target. For each point, the 
algorithm seeks for the nearest centroid. In this case, the nearest centroid has an intensity 
value similar to the one of the group of points. Thus, each point becomes part of the group 
of the nearest centroid. When all the points are grouped, the centroids will be recalculated 
to verify that each point belongs to the appropriate group. The algorithm iteratively repeats 
this operation more times as far as the values converge. Convergence takes place when 
points stop to switch between different groups, but other criteria can also be implemented 
to control iterations. For instance, the maximum number of exchanges between groups or 
the maximum number of total iterations may be used to this purpose. In such a case, the 
maximum number of iterations must be defined in order to limit the process, i.e., the user 
enters the number of iterations and the result is dependent upon this choice. 
After segmentation of the database into different groups, the recovery of intensity data can 
be operated by using the following simple Equation [1] that was implemented in IRA:

I I
kc
m= [ ]1

where Ic is the corrected intensity value, Im is the actual laser intensity value as measured 
by TLS sensor and ranging from 0 to 255 DN, and k is the estimated collision value of the 
laser pulse with the target, being (k Є R ; 0 < k ≤ 1). Once k value is defined, it is possible 
to restore the intensity value. Considering that Q is the set of all points in the database, P is 
then defined as the set of clustered points, which belong to the edge effect group, p is a point 
from set P, and q is a point from set Q. For each point p that belongs to P, an Axis-Aligned 
Bounding Box (AABB) is created that is centered on p. The size of AABB is defined on 
the basis of the spacing between points, performed before the scanning setup. All points q 
from set Q are tested to verify whether q is inside AABB, whose size is defined through the 
spacing between points generating the spacing variable. The scanning setup is necessary 
in order to have a minimum number of points to calculate the collision approximation. If 
a point q is inside AABB, then q is inserted in a quadtree 1 of n levels created in the same 
AABB’s position and with the same AABB’s size. Figure 4 shows AABB with point p in 
the center colored in blue.
Using the number of points in each quadrant of the quadtree, the number of collisions 
between the laser beam footprints and the target is estimated. Each quadrant has a collision 
percentage (perc) which depends upon the quadtree level n, Equation [2]:

perc n= [ ]1
4

2

if quadtree level n=1, then quadtree has 4 quadrants. In such a case, each quadrant 
corresponds to 25% of a collision.
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Figure 4 - Example of Axis-Aligned Bounding 
Box (AABB) with quadtree level 1. (a) AABB 
with points inside. (b) quadtree 2D structure 
centered in the same position of AABB with 
AABB points included.

The collision percentage perc is the more important element of the algorithm, since the 
calculation of collisions measured by the laser is operated at this point. The value perc is 
calculated by considering a weight of 25% for each one of the four quadrants of AABB. 
The algorithm identifies which quadrant has the greatest number of points, and then it 
records the weight using 25% for the average intensity of the points in this quadrant. This is 
considered as the reference quadrant. The calculation of the weight of the other quadrants is 
carried out by taking into consideration the fraction of points in each quadrant with respect 
to those in the reference quadrant.

Testing IRA
The algorithm has been tested first on a forestry target consisting of a single guava tree 
(Psidium guajava). This choice has been motivated by the availability of such an appropriate 
target near to the laboratory, on the tree’s medium size (dimensions spanning from 7m to 
12m), and its regularly shaped leaves. No obstacles were present between the guava tree 
and the ILRIS 3D standpoint, avoiding the risk of occlusions. Moreover, such configuration 
has made sure that the edge effect would not result from another targets, but only due to the 
guava tree. The target has been sampled from approximately 40m far away from the laser 
scanner in order to avoid parallax distortion. After scanning, the points cloud file with 8-bits 
radiometric resolution that contained X, Y, Z and I has been processed by IRA. The point 
cloud has been initially classified into three groups (branches, leaves and points affected by 
the edge effect) using the k-mean-based algorithm.

Results and discussion
Results of edge effect test
The greater the distance between the laser and the target, the larger is the diameter of the 
laser footprint. Generally, the points affected by the edge effect have a lower intensity 
value, as previously addressed by Kaasalainen et al. [2009, 2011], Seielstad et al. [2011] 
and Bordin et al. [2013]. The distance also reduces the intensity values. The edge effect and 
the distortions in the intensity data, in this case, occurred due to the divergence of the laser 
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beam and the influence of distance [Bordin et al., 2013], although Eitel et al. [2010] did 
not identify distortions in intensity caused by distance ranging from 1.1 to 2.6 m from the 
target. This occurs because the beam spreads more as the distance grows up. The longer the 
distance, the longer is the distribution of the radiation over the area, or the same amount of 
radiation interacts with a greater area of the target (see Fig. 5).

Figure 5 - Variation of the area (A and A’) of interaction 
of radiation from the laser beam depending on the 
distance (d and d’) between sensor and target.

This relationship is shown by Equation [3], where shorter distances might cause non-
significant distortions:

A
d

=

















[ ]π

θ2
2

2
3

2

tan

where A is the area illuminated by the laser beam, d is the distance between sensor and 
target, and θ is the divergence angle of the laser beam.
During this test, two types of distortions in the point cloud data caused by the edge effect 
have been identified. The first type is that the edge effect affects the data resulting in 
distortions of intensity values. The second type is that the edge effect shifts points in the 
space along a certain spatial direction.
The modification of laser intensity values occurs when the sensor records the return of laser 
beam as a mixture of reflections from the white board behind the target and from the target 
itself (wooden board with holes), since the aperture of the sensor receives the radiation that 
returns from two targets during the range of time. An average of both intensity values is 
then recorded. In Figure 6a in green or 6b in gray scale, the points inside the circles and 
in the outer portion of the wooden board show distortions in their intensity values caused 
by the edge effect. Overall, the points affected by the edge effect have lower values than 
others, as also reported by Eitel et al. [2010].
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Figure 6 - Edge effect generated in the initial test. (a) Figure in 
grayscale (b) Figure in false color. The green points inside the 
circles and around the blue rectangle represent the edge effect seen 
in the 3D point cloud.

Moreover, the spatial scanning resolution also contributes to the distortion of intensity 
values. Three possible situations can be observed from the experimental results. The first 
situation is shown in Figure 7a, where the edge of the rectangle is scanned, and the distance 
between centers of laser footprints are larger than the beam diameter, resulting in unrecorded 
data. In the second situation shown in Figure 7b, the distance between the centers of laser 
footprints is smaller than the beam diameter, so the beam borders partially overlap and 
result in the noise in the intensity data of the final point cloud. In the third situation shown 
in Figure 7c, the distance between centers of footprints is equal to the diameter of the laser 
footprint and leads to the best case scenario, because all the area is sampled and no noise is 
generated in the point cloud.

Figure 7 - Different cases of resolutions of data acquired with 
terrestrial laser scanner. (a) The distance between centers of laser 
footprint is larger than laser beam diameter; (b) The distance 
between centers of laser footprint is smaller than laser beam 
diameter; (c) The distance between centers of laser footprint is equal 
to laser beam diameter.

In the second type of distortion, 3D points are shifted in space, as shown in Figure 8. This 
distortion occurs on the y-axis because the sensor calculates the distance of points based 
on the average return time of the pulse that returns from both the target and the white 
screen.
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Figure 8 - Edge effect generated in the initial test. The 
green points in the cloud are shifted in space on the 
y-axis (figure in false color).

The study of the edge effect is a very complex subject that requires a range of complementary 
experiments to address the topic. Therefore, the distortion of points in the space will not be 
addressed. This study is focused only on understanding and correcting distortion of laser 
intensity data values.

Application of IRA to a real forestry data set
The edge effect has been investigated on the whole guava tree. The point cloud has been 
initially composed of 1,082,996 3D points. After processing and classifying initial intensity 
values, using a modified k-mean algorithm for three groups (branches, leaves and points 
affected by edge effect) and points have been classified according to the image shown in 
Figure 9a. After the first classification stage, 151,542 points have been classified as branches 
(red color, 13.99% of total points), 390,200 points as affected by the edge effect (blue 
color, 36.03% of total points), and 541,254 points as leaves (green color, 49.98% of total 
points). The goal of this classification stage has been to segment out all points affected by 
the edge effect before processing data in order to recover lost laser intensity values. Figure 
9b verifies that the algorithm has satisfactorily identified the edge effect (blue color). After 
classification, those points that have been characterized as belonging to the edge effect have 
been processed using IRA to recover branch and leaf points.
After IRA processing, all points have been further characterized as those shown in Figure 
9b, with 221,901 points classified as branches (red color, 20.49% of total points), 250,844 
points classified as affected by edge effect (blue color, 23.16% of total points), and 610,251 
points classified as leaves (green color, 56.35% of total points).
Data processing of the edge effect points by IRA resulted in recovering of 139,356 points 
or approximately 35.71% of lost intensity values. These 139,356 points were classified 
as 68,997 points for leaves and 70,359 points for branches. The results suggested that if 
laser intensity values are exploited to investigate a correlated environmental variable (e.g., 
chlorophyll, carbon or water content), the application of IRA would mitigate the estimation 
errors, as shown in Table 2.
Figure 9a and 9b visually show the result of minimizing the edge effect presented in Table 2. 
In Figure 9a, the quantity of blue points is visibly larger than the ones shown in Figure 9b. 
Table 2 summarizes the results obtained after IRA processing. Those points still affected 
by the edge effect are represented in blue, while leaves are in green and branches in red 
(Fig. 9b).
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Figure 9 - Point clouds of the guava tree displayed as a 3D image before (a) and 
after (b) recovering lost intensity values due to the edge effect. The tree before 
processing (a) shows a large number of blue edge effect points, whereas the tree 
after processing (b) shows a reduced number of blue edge effect points (figure 
is in false color).

Table 2 - Summary of results obtained after IRA processing of guava tree point cloud.

Classes

Point cloud 
segmented 
(Number of 

points) - Figure 
11a

%

Point cloud 
processed by

IRA (Number of 
points) - Figure

11b

%

Point cloud
difference 

before/after
processing by

 IRA

%
difference

Edge effect 
points 390,200 36.03 250,844 23.16 139,356 35.71

Leaves 541,254 49.98 610,251 56.35 68,997 112.75

Branches 151,542 13.99 221,901 20.49 70,359 146.43

Total 1,082,996 100 1,082,996 100 - -

From the analysis of the results, branches are more affected by the edge effect than leaves 
are. This is motivated because the diameter of the majority of branches is smaller than 
the diameter of leaves. In other words, the smaller the target, the more the target will be 
affected by the edge effect. If leaves are smaller than branch diameters, leaves would have 
been more affected. The IRA has been proved to be more effective for recovering leave 
points, restoring 35.71% of points distorted by the edge effect in this study.
For a better understanding of somehow IRA processes the point cloud, histograms are 
presented to show the variation of the laser intensity values before and after processing 
(Fig. 10). The recovered 35.71% intensity data is directly correlated to the recovery of 
the radiation that has been lost; therefore, points originally classified as edge effect may 
continue to belong to this group even after processing. This result explains the recovery of 
the intensity data of 35.71% of total points. In fact, part of the database classified as edge 
effect continues to be part of the class of edge effect points after processing.
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Figure 10 - Distribution of laser intensity of the guava tree point cloud before column (a) 
and after column (b) segmentation and processing by IRA.

The histograms in Figure 10 show the variation of the laser intensity of the point cloud of 
the entire tree in 8 bits before (Fig. 10a) and after IRA processing (Fig. 10b). The histograms 
show a normal distribution with the greatest number of points having intensities between 
0 DN and 100 DN before IRA processing. The average intensity was approximately 52.99 
DN with a standard deviation of 22.55 DN. After processing, the normal distribution of the 
histogram shows a greater range of intensities between 0 DN and 140 DN (Fig. 10b). 
Processing using IRA provides some interesting information that can be seen in Figure 
10. Points that have been identified as branches are also those points with higher intensity 
values. For example, branches reflect a larger amount of radiation for mid-infrared 
wavelengths than leaves do. Thus, the average laser intensity values of leaves range from 
58.68 DN to 78.34 DN after IRA processing and shows a standard deviation of 8.19 DN to 
9.90 DN, respectively (Tab. 3).

Table 3 - Intensity values before and after application of IRA.

Classes Analysis Before After

Tree intensity (ND)
Average 52.99 77.07

Standard derivation 22.55 29.23

Branches intensity (ND)
Average 90.00 117.21

Standard deviation 16.80 18.47

Edge effect intensity (ND)
Average 30.72 38.47

Standard deviation 11.67 15.12

Leaves intensity (ND)
Average 58.68 78.34

Standard deviation 8.19 9.90

Final remarks
The results presented in this study demonstrate that laser intensity of points gathered using 
terrestrial laser scanning (TLS) sensors can be used to classify different components of 
trees, such as branches and canopy. On the other hand, a significant number of points may 
be affected by the so called edge effect. This is because laser footprints may cover areas 



313

European Journal of Remote Sensing - 2016, 49: 301-315

at different distances from the sensor, resulting in averaging of laser intensity returns. In 
applications to estimate and/or quantify carbon and biomass composition, the edge effect 
should be compensated for to avoid bias in the outcomes. In this paper, an algorithm to 
accomplish this task has been presented and tested. The Intensity Recovery Algorithm (IRA) 
works on laser intensity data that are classified based on k-means partitioning. Experiments 
carried out in a controlled environment are fundamental to understand how the edge effect 
in the point cloud occurs. Two types of distortions may occur in point cloud laser data. The 
first type affects data by causing distortions in intensity values. The second type creates an 
edge effect that shifts the points in space along a certain direction. By processing a real data 
set of a tree with IRA, 35.71% of the total laser intensity values that were affected by the 
edge effect have been recovered. This result shows that the use of the IRA on intensity data 
values is effective to decrease distortions caused by the edge effect. This algorithm will aid 
in the development of methodologies to study the correlation between TLS intensity and 
physical and chemical characteristics in forestry and other domain applications. The ability 
to identify a correlation between TLS intensity and properties such as water, carbon and 
sulfur content in trees could lead to the creation of more efficient and cheaper methodologies 
to quantify physical and chemical characteristics, using remote and non-destructive data 
collect on techniques.
The algorithm developed for minimizing the edge effect is a first attempt to cope effectively 
with the problem regarding the edge effect on TLS data. Therefore, more researches must 
be conducted to test and improve this methodology. The usage of a structure composed 
of an octree rather than a quadtree might be an alternative method to improve the results 
[Samet, 2006]. In terms of clustering, algorithms based on other classification methods 
should also be tested and compared. Although the algorithm has been used in a case study 
where three classes sufficed, this does not limit its application to those cases where a larger 
number of classes may be necessary.
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