1,301 research outputs found
On the equivalence between the cell-based smoothed finite element method and the virtual element method
We revisit the cell-based smoothed finite element method (SFEM) for
quadrilateral elements and extend it to arbitrary polygons and polyhedrons in
2D and 3D, respectively. We highlight the similarity between the SFEM and the
virtual element method (VEM). Based on the VEM, we propose a new stabilization
approach to the SFEM when applied to arbitrary polygons and polyhedrons. The
accuracy and the convergence properties of the SFEM are studied with a few
benchmark problems in 2D and 3D linear elasticity. Later, the SFEM is combined
with the scaled boundary finite element method to problems involving
singularity within the framework of the linear elastic fracture mechanics in
2D
An extended finite element method with smooth nodal stress
The enrichment formulation of double-interpolation finite element method
(DFEM) is developed in this paper. DFEM is first proposed by Zheng \emph{et al}
(2011) and it requires two stages of interpolation to construct the trial
function. The first stage of interpolation is the same as the standard finite
element interpolation. Then the interpolation is reproduced by an additional
procedure using the nodal values and nodal gradients which are derived from the
first stage as interpolants. The re-constructed trial functions are now able to
produce continuous nodal gradients, smooth nodal stress without post-processing
and higher order basis without increasing the total degrees of freedom. Several
benchmark numerical examples are performed to investigate accuracy and
efficiency of DFEM and enriched DFEM. When compared with standard FEM,
super-convergence rate and better accuracy are obtained by DFEM. For the
numerical simulation of crack propagation, better accuracy is obtained in the
evaluation of displacement norm, energy norm and the stress intensity factor
Egg production response of sex-linked albino (sa1) and colored (S) hens to high and low light intensities during brooding-rearing
International audienc
Leptonic secondary emission in a hadronic microquasar model
Context: It has been proposed that the origin of the very high-energy photons
emitted from high-mass X-ray binaries with jet-like features, so-called
microquasars (MQs), is related to hadronic interactions between relativistic
protons in the jet and cold protons of the stellar wind. Leptonic secondary
emission should be calculated in a complete hadronic model that include the
effects of pairs from charged pion decays inside the jets and the emission from
pairs generated by gamma-ray absorption in the photosphere of the system. Aims:
We aim at predicting the broadband spectrum from a general hadronic microquasar
model, taking into account the emission from secondaries created by charged
pion decay inside the jet. Methods: The particle energy distribution for
secondary leptons injected along the jets is consistently derived taking the
energy losses into account. We also compute the spectral energy distribution
resulting from these leptons is calculated after assuming different values of
the magnetic field inside the jets. The spectrum of the gamma-rays produced by
neutral pion-decay and processed by electromagnetic cascades under the stellar
photon field. Results: We show that the secondary emission can dominate the
spectral energy distribution at low energies (~1 MeV). At high energies, the
production spectrum can be significantly distorted by the effect of
electromagnetic cascades. These effects are phase-dependent, and some
variability modulated by the orbital period is predicted.Comment: 8 pages, 5 figures. Accepted for publication in Astronomy &
Astrophysic
- …