1,308 research outputs found

    Ionization of atoms by few-cycle EUV laser pulses: carrier-envelope phase dependence of the intra-pulse interference effects

    Full text link
    We have investigated the ionization of the H atom by intense few-cycle laser pulses, in particular the intra-pulse interference effects, and their dependence on the carrier-envelope phase (CEP) of the laser pulse. In the final momentum distribution of the continuum electrons the imprint of two types of intra-pulse interference effects can be observed, namely the temporal and spatial interference. During the spatial interference electronic wave packets emitted at the same time, but following different paths interfere leading to an interference pattern measurable in the electron spectra. This can be also interpreted as the interference between a direct and a scattered wave, and the spatial interference pattern as the holographic mapping (HM) of the target. This HM pattern is strongly influenced by the carrier-envelope phase through the shape of the laser pulse. Here, we have studied how the shape of the HM pattern is modified by the CEP, and we have found an optimal CEP for the observation of HM

    Ionization of helium by slow antiproton impact: total and differential cross sections

    Full text link
    We theoretically investigate the single and double ionization of the He atom by antiproton impact for projectile energies ranging from 33~keV up to 10001000~keV. We obtain accurate total cross sections by directly solving the fully correlated two-electron time-dependent Schr\"odinger equation and by performing classical trajectory Monte-Carlo calculations. The obtained quantum-mechanical results are in excellent agreement with the available experimental data. Along with the total cross sections, we also present the first fully \textit{ab initio} doubly differential data for single ionization at 10 and 100~keV impact energies. In these differential cross sections we identify the binary-encounter peak along with the anticusp minimum. Furthermore, we also point out the importance of the post-collisional electron-projectile interaction at low antiproton energies which significantly suppresses electron emission in the forward direction

    Photoelectron holography of atomic targets

    Get PDF
    We study the spatial interference effects appearing during the ionization of atoms (H, He, Ne, and Ar) by few-cycle laser pulses using single-electron ab initio calculations. The spatial interference is the result of the coherent superposition of the electronic wave packets created during one half cycle of the driving field following different spatial paths. This spatial interference pattern may be interpreted as the hologram of the target atom. With the help of a wave-function analysis (splitting) technique and approximate (strong-field and Coulomb-Volkov) calculations, we directly show that the hologram is the result of the electronic-wave-packet scattering on the parent ion. On the He target we demonstrate the usefulness of the wave-function splitting technique in the disentanglement of different interference patterns. Further, by performing calculations for the different targets, we show that the pattern of the hologram does not depend on the angular symmetry of the initial state and it is strongly influenced by the atomic species of the target: A deeper bounding potential leads to a denser pattern.Fil: Borbély, S.. Babes Bolyai University; RumaniaFil: Tóth, A.. ELI-HU Nonprofit Ltd; HungríaFil: Arbo, Diego. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaFil: Tokési, K.. ELI-HU Nonprofit Ltd; Hungría. Hungarian Academy of Sciences. Institute for Nuclear Research; HungríaFil: Nagy, L.. Babes-bolyai University; Rumani

    Ionization of the hydrogen atom by intense ultrashort laser pulses

    Full text link
    The ionization of atomic hydrogen in intense laser fields is studied theoretically. The calculations were performed applying both quantummechanical and classical approaches. Treating the problem quantummechanically, the time dependent Schr\"odinger equation (TDSE) of our system was first transformed into a pseudo-momentum space and solved in this space iteratively. While neglecting the Coulomb potential during the solution of the TDSE we got the results in the Volkov approximation, in the first order solution we taken into account the Coulomb potential as perturbation. The classical calculations were performed within the framework of the classical trajectory Monte-Carlo (CTMC) method. The double differential ionization probabilities are calculated for different laser pulses and a reasonable agreement was found between the theories. Major differences can be observed in the angular distribution of electrons at low electron energies between classical and the quantummechanical approaches. At high electron energies the differences disappear, which indicates that the generation of low energy electrons is of quantum type, and it is strongly influenced by the Coulomb potential, while the production of high energy electrons is of classical type and it is less influenced by the Coulomb interaction. Our results are also compared with the Coulomb-Volkov (CV) model calculations.Comment: submited to PR

    Communications Biophysics

    Get PDF
    Contains reports on four research projects.National Institutes of Health (Grant 1 P01 GM-14940-02)Joint Services Electronics Programs (U. S. Army, U. S. Navy, and U. S. Air Force) under Contract DA 28-043-AMC-02536(E)National Institutes of Health (Grant 5 TO1 GM-01555-02

    Electron correlations in the antiproton energy-loss distribution in He

    Get PDF
    We present ab initio calculations of the electronic differential energy-transfer cross sections for antiprotons with energies between 3 keV and 1 MeV interacting with helium. By comparison with simulations employing the mean-field description based on the single-active electron approximation we are able to identify electron correlation effects in the stopping and straggling cross sections. Most remarkably, we find that straggling exceeds the celebrated Bohr straggling limit when correlated shake-up processes are included

    Correlation Between the Deuteron Characteristics and the Low-energy Triplet np Scattering Parameters

    Full text link
    The correlation relationship between the deuteron asymptotic normalization constant, ASA_{S}, and the triplet np scattering length, ata_{t}, is investigated. It is found that 99.7% of the asymptotic constant ASA_{S} is determined by the scattering length ata_{t}. It is shown that the linear correlation relationship between the quantities AS2A_{S}^{-2} and 1/at1/a_{t} provides a good test of correctness of various models of nucleon-nucleon interaction. It is revealed that, for the normalization constant ASA_{S} and for the root-mean-square deuteron radius rdr_{d}, the results obtained with the experimental value recommended at present for the triplet scattering length ata_{t} are exaggerated with respect to their experimental counterparts. By using the latest experimental phase shifts of Arndt et al., we obtain, for the low-energy scattering parameters (ata_{t}, rtr_{t}, PtP_{t}) and for the deuteron characteristics (ASA_{S}, rdr_{d}), results that comply well with experimental data.Comment: 19 pages, 1 figure, To be published in Physics of Atomic Nucle
    corecore