108 research outputs found

    Structure of the species-energy relationship

    Get PDF
    The relationship between energy availability and species richness (the species-energy relationship) is one of the best documented macroecological phenomena. However, the structure of species distribution along the gradient, the proximate driver of the relationship, is poorly known. Here, using data on the distribution of birds in southern Africa, for which species richness increases linearly with energy availability, we provide an explicit determination of this structure. We show that most species exhibit increasing occupancy towards more productive regions (occurring in more grid cells within a productivity class). However, average reporting rates per species within occupied grid cells, a correlate of local density, do not show a similar increase. The mean range of used energy levels and the mean geographical range size of species in southern Africa decreases along the energy gradient, as most species are present at high productivity levels but only some can extend their ranges towards lower levels. Species turnover among grid cells consequently decreases towards high energy levels. In summary, these patterns support the hypothesis that higher productivity leads to more species by increasing the probability of occurrence of resources that enable the persistence of viable populations, without necessarily affecting local population densities

    Resilience trinity: safeguarding ecosystem functioning and services across three different time horizons and decision contexts

    Get PDF
    Ensuring ecosystem resilience is an intuitive approach to safeguard the functioning of ecosystems and hence the future provisioning of ecosystem services (ES). However, resilience is a multi‐faceted concept that is difficult to operationalize. Focusing on resilience mechanisms, such as diversity, network architectures or adaptive capacity, has recently been suggested as means to operationalize resilience. Still, the focus on mechanisms is not specific enough. We suggest a conceptual framework, resilience trinity, to facilitate management based on resilience mechanisms in three distinctive decision contexts and time‐horizons: 1) reactive, when there is an imminent threat to ES resilience and a high pressure to act, 2) adjustive, when the threat is known in general but there is still time to adapt management and 3) provident, when time horizons are very long and the nature of the threats is uncertain, leading to a low willingness to act. Resilience has different interpretations and implications at these different time horizons, which also prevail in different disciplines. Social ecology, ecology and engineering are often implicitly focussing on provident, adjustive or reactive resilience, respectively, but these different notions of resilience and their corresponding social, ecological and economic tradeoffs need to be reconciled. Otherwise, we keep risking unintended consequences of reactive actions, or shying away from provident action because of uncertainties that cannot be reduced. The suggested trinity of time horizons and their decision contexts could help ensuring that longer‐term management actions are not missed while urgent threats to ES are given priority

    Can we have it all? The role of grassland conservation in supporting forage production and plant diversity

    Get PDF
    Context A key global challenge is to meet both the growing demand for food and feed while maintaining biodiversity’s supporting functions. Protected grasslands, such as Natura 2000 sites in Europe, may play an important role in harmonising productivity and biodiversity goals. This work contributes to an understanding of the relationship between forage production and plant diversity in protected and non-protected grasslands. Objectives We aimed to identify differences in plant diversity and forage production between protected and non-protected grasslands by assessing the effects of land-use intensity (i.e. mowing, grazing, fertilising) on these variables. Methods Data were available for 95 managed grassland plots (50 × 50 m) in real-managed landscapes. After controlling for site conditions in the analysis, we tested for significant differences between protected and non-protected grasslands and used a multi-group structural equation modelling (SEM) framework to investigate the linkages between land-use intensity, biomass and plant diversity. Results In protected grasslands, plant diversity was significantly higher while forage production was significantly lower. In non-protected grasslands we found significantly higher land-use intensity, particularly in relation to mowing and fertilisation. Grazing intensity did not significantly differ between protected and non-protected grasslands. In non-protected grasslands we found a significant negative association between forage production and plant diversity. However, this effect was not significant in protected grasslands. We also found a negative association between land-use and plant diversity in both grassland types that was related to mowing and fertilising intensity. These two management aspects also influenced the positive association between land-use intensity and forage production. Furthermore, environmental conditions had a positive effect on forage production and a negative effect on plant diversity in protected grasslands. Conclusions Our results confirm that the protection of grassland sites is successful in achieving higher plant diversity compared to non-protected grasslands and that protected grasslands do not necessarily trade-off with forage production. This is possible under moderate grazing intensities as higher land-use intensity has a negative effect on plant diversity, particularly on rare species. However, forage production is lower in protected sites as it is driven by mowing and fertilisation intensity. Future research needs to further investigate if the nature of these relationships depends on the livestock type or other management practices

    Increasing understanding of alien species through citizen science (Alien-CSI)

    Get PDF
    There is no sign of saturation in accumulation of alien species (AS) introductions worldwide, additionally the rate of spread for some species has also been shown to be increasing. However, the challenges of gathering information on AS are recognized. Recent developments in citizen science (CS) provide an opportunity to improve data flow and knowledge on AS while ensuring effective and high quality societal engagement with the issue of IAS (Invasive Alien Species). Advances in technology, particularly on-line recording and smartphone apps, along with the development of social media, have revolutionized CS and increased connectivity while new and innovative analysis techniques are emerging to ensure appropriate management, visualization, interpretation and use and sharing of the data. In early July 2018 we launched a European CO-operation in Science and Technology (COST) Action to address multidisciplinary research questions in relation to developing and implementing CS, advancing scientific understanding of AS dynamics while informing decision-making specifically implementation of technical requirements of relevant legislation such as the EU Regulation 1143/2014 on IAS. It will also support the EU biodiversity goals and embedding science within society. The Action will explore and document approaches to establishing a European-wide CS AS network. It will embrace relevant innovations for data gathering and reporting to support the implementation of monitoring and surveillance measures, while ensuring benefits for society and citizens, through an AS CS European network. The Action will, therefore, increase levels of participation and quality of engagement with current CS initiatives, ensuring and evaluating educational value, and improve the value outcomes for potential users including citizens, scientists, alien species managers, policy-makers, local authorities, industry and other stakeholders

    sMon - Trend analysis of German biodiversity data

    Get PDF
    Most biodiversity data are collected by volunteers organised in natural history societies or citizen science projects, often closely aligned with (sub )national agencies and local authorities. Data may be heterogeneous in space, time and quality. Here, we present first results of trend analyses of joint work with German natural history societies and state and national conservation agencies through the sMon synthesis project within iDiv. We combine and harmonize exemplary datasets of different taxa and habitats to evaluate the potentials and limits for analysing changes in the state of biodiversity in Germany. We show trend analyses of occupancy frequency data for 60 dragonfly, 42 grasshopper species and amphibia across 3 federal states 1980-2015, using Bayesian hierarchical trend analyses that build on occupancy detection models. Based on these insights and evaluation of citizen science programmes globally, we derive principles for good practice citizen science project design, data collection and archiving and explore methodologies that can deal with fragmented data of different spatio-temporal resolution and quality. This includes harnessing the potentials offered by modern technology. Combined with experiences of joint working of volunteer experts, agencies and academic scientists, this informs perspectives for future biodiversity monitoring programmes in Germany

    National Ecosystem Assessments in Europe: A Review

    Get PDF
    National ecosystem assessments form an essential knowledge base for safeguarding biodiversity and ecosystem services. We analyze eight European (sub-)national ecosystem assessments (Portugal, United Kingdom, Spain, Norway, Flanders, Netherlands, Finland, and Germany) and compare their objectives, political context, methods, and operationalization. We observed remarkable differences in breadth of the assessment, methods employed, variety of services considered, policy mandates, and funding mechanisms. Biodiversity and ecosystem services are mainly assessed independently, with biodiversity conceptualized as underpinning services, as a source of conflict with services, or as a service in itself. Recommendations derived from our analysis for future ecosystem assessments include the needs to improve the common evidence base, to advance the mapping of services, to consider international flows of services, and to connect more strongly to policy questions. Although the context specificity of national ecosystem assessments is acknowledged as important, a greater harmonization across assessments could help to better inform common European policies and future pan-regional assessments

    Effects of large herbivores on fire regimes and wildfire mitigation

    Get PDF
    Review1. Abandonment of agricultural land is widespread in many parts of the world, leading to shrub and tree encroachment. The increase of flammable plant biomass, that is, fuel load, increases the risk and intensity of wildfires. Fuel reduction by herbivores is a promising management strategy to avoid fuel build-up and mitigate wildfires. However, their effectiveness in mitigating wildfire damage may depend on a range of factors, including herbivore type, population density and feeding patterns. 2. Here, we review the evidence on whether management with herbivores can reduce fuel load and mitigate wildfires, and if so, how to identify suitable management that can achieve fire mitigation objectives while providing other ecosystem services. We systematically reviewed studies that investigated links between herbivores, fire hazard, fire frequency and fire damage. 3. We found that, in general, herbivores reduce fuel load most effectively when they are mixed feeders, when grazing and browsing herbivores are combined and when herbivore food preferences match the local vegetation. In some cases, the combination of herbivory with other management strategies, such as mechanical clearing, is necessary to reduce wildfire damage. 4. Synthesis and Applications. We conclude that herbivores have the capacity to mitigate wildfire damage, and we provide guidance for grazing management for wildfire mitigation strategies. As areas undergoing land abandonment are particularly prone to wildfires, the maintenance or promotion of grazing by domestic or wild herbivores is a promising tool to reduce wildfire risk in a cost-effective way, while also providing other ecosystem services. Relevant land-use policies, including fire suppression policies, agricultural and forest(ry) policies could incentivise the use of herbivores for better wildfire prevention.info:eu-repo/semantics/publishedVersio

    Widespread decline in Central European plant diversity across six decades

    Get PDF
    Abstract Based on plant occurrence data covering all parts of Germany, we investigated changes in the distribution of 2136 plant species between 1960 and 2017. We analyzed 29 million occurrence records over an area of ~350,000 km 2 on a 5 × 5 km grid using temporal and spatiotemporal models and accounting for sampling bias. Since the 1960s, more than 70% of investigated plant species showed declines in nationwide occurrence. Archaeophytes (species introduced before 1492) most strongly declined but also native plant species experienced severe declines. In contrast, neophytes (species introduced after 1492) increased in their nationwide occurrence but not homogeneously throughout the country. Our analysis suggests that the strongest declines in native species already happened in the 1960s–1980s, a time frame in which often few data exist. Increases in neophytic species were strongest in the 1990s and 2010s. Overall, the increase in neophytes did not compensate for the loss of other species, resulting in a decrease in mean grid cell species richness of −1.9% per decade. The decline in plant biodiversity is a widespread phenomenon occurring in different habitats and geographic regions. It is likely that this decline has major repercussions on ecosystem functioning and overall biodiversity, potentially with cascading effects across trophic levels. The approach used in this study is transferable to other large‐scale trend analyses using heterogeneous occurrence data

    When, Where, and How Nature Matters for Ecosystem Services: Challenges for the Next Generation of Ecosystem Service Models

    Get PDF
    Many decision-makers are looking to science to clarify how nature supports human well-being. Scientists\u27 responses have typically focused on empirical models of the provision of ecosystem services (ES) and resulting decision-support tools. Although such tools have captured some of the complexities of ES, they can be difficult to adapt to new situations. Globally useful tools that predict the provision of multiple ES under different decision scenarios have proven challenging to develop. Questions from decision-makers and limitations of existing decision-support tools indicate three crucial research frontiers for incorporating cutting-edge ES science into decision-support tools: (1) understanding the complex dynamics of ES in space and time, (2) linking ES provision to human well-being, and (3) determining the potential for technology to substitute for or enhance ES. We explore these frontiers in-depth, explaining why each is important and how existing knowledge at their cutting edges can be incorporated to improve ES decision-making tools
    corecore