2,444 research outputs found
Direct Observation of Large Amplitude Spin Excitations Localized in a Spin-Transfer Nanocontact
We report the direct observation of large amplitude spin-excitations
localized in a spin-transfer nanocontact using scanning transmission x-ray
microscopy. Experiments were conducted using a nanocontact to an ultrathin
ferromagnetic multilayer with perpendicular magnetic anisotropy. Element
resolved x-ray magnetic circular dichroism images show an abrupt onset of spin
excitations at a threshold current that are localized beneath the nanocontact,
with average spin precession cone angles of 25{\deg} at the contact center. The
results strongly suggest that we have observed a localized magnetic soliton.Comment: 5 pages, 3 figure
Spontaneous heavy cluster emission rates using microscopic potentials
The nuclear cluster radioactivities have been studied theoretically in the
framework of a microscopic superasymmetric fission model (MSAFM). The nuclear
interaction potentials required for binary cold fission processes are
calculated by folding in the density distribution functions of the two
fragments with a realistic effective interaction. The microscopic nuclear
potential thus obtained has been used to calculate the action integral within
the WKB approximation. The calculated half lives of the present MSAFM
calculations are found to be in good agreement over a wide range of observed
experimental data.Comment: 4 pages, 4 figure
Analytical study of coherence in seeded modulation instability
We derive analytical expressions for the coherence in the onset of modulation
instability, in excellent agreement with thorough numerical simulations. As
usual, we start by a linear perturbation analysis, where broadband noise is
added to a continuous wave (CW) pump; then, we investigate the effect of adding
a deterministic seed to the CW pump, a case of singular interest as it is
commonly encountered in parametric amplification schemes. Results for the
dependence of coherence on parameters such as fiber type, pump power,
propagated distance, seed signal-to-noise ratio are presented. Finally, we show
the importance of including higher-order linear and nonlinear dispersion when
dealing with generation in longer wavelength regions (mid IR). We believe these
results to be of relevance when applied to the analysis of the coherence
properties of supercontinua generated from CW pumps.Comment: 6 pages, 8 figure
Entropy theorems in classical mechanics, general relativity, and the gravitational two-body problem
In classical Hamiltonian theories, entropy may be understood either as a
statistical property of canonical systems, or as a mechanical property, that
is, as a monotonic function of the phase space along trajectories. In classical
mechanics, there are theorems which have been proposed for proving the
non-existence of entropy in the latter sense. We explicate, clarify and extend
the proofs of these theorems to some standard matter (scalar and
electromagnetic) field theories in curved spacetime, and then we show why these
proofs fail in general relativity; due to properties of the gravitational
Hamiltonian and phase space measures, the second law of thermodynamics holds.
As a concrete application, we focus on the consequences of these results for
the gravitational two-body problem, and in particular, we prove the
non-compactness of the phase space of perturbed Schwarzschild-Droste
spacetimes. We thus identify the lack of recurring orbits in phase space as a
distinct sign of dissipation and hence entropy production.Comment: 39 pages, 3 figures; v2: version to appear in Phys. Rev. D,
references adde
Recommended from our members
Developing and evaluating interventions to reduce inappropriate prescribing by general practitioners of antibiotics for upper respiratory tract infections: a randomised controlled trial to compare paper-based and web-based modelling experiments
Background: Much implementation research is focused on full-scale trials with little evidence of preceding modelling work. The Medical Research Council Framework for developing and evaluating complex interventions has argued for more and better theoretical and exploratory work prior to a trial as a means of improving intervention development. Intervention modelling experiments (IMEs) are a way of exploring and refining an intervention before moving to a full-scale trial. They do this by delivering key elements of the intervention in a simulation that approximates clinical practice by, for example, presenting general practitioners (GPs) with a clinical scenario about making a treatment decision.
Methods: The current proposal will run a full, web-based IME involving 250 GPs that will advance the methodology of IMEs by directly comparing results with an earlier paper-based IME. Moreover, the web-based IME will evaluate an intervention that can be put into a full-scale trial that aims to reduce antibiotic prescribing for upper respiratory tract infections in primary care. The study will also include a trial of email versus postal invitations to participate.
Discussion: More effective behaviour change interventions are needed and this study will develop one such intervention and a system to model and test future interventions. This system will be applicable to any situation in the National Health Service where behaviour needs to be modified, including interventions aimed directly at the public.
Trial registration: ClinicalTrials (NCT): NCT0120673
A framework for quantifying hydrologic effects of soil structure across scales
Earth system models use soil information to parameterize hard-to-measure soil hydraulic properties based on pedotransfer functions. However, current parameterizations rely on sample-scale information which often does not account for biologically-promoted soil structure and heterogeneities in natural landscapes, which may significantly alter infiltration-runoff and other exchange processes at larger scales. Here we propose a systematic framework to incorporate soil structure corrections into pedotransfer functions, informed by remote-sensing vegetation metrics and local soil texture, and use numerical simulations to investigate their effects on spatially distributed and areal averaged infiltration-runoff partitioning. We demonstrate that small scale soil structure features prominently alter the hydrologic response emerging at larger scales and that upscaled parameterizations must consider spatial correlations between vegetation and soil texture. The proposed framework allows the incorporation of hydrological effects of soil structure with appropriate scale considerations into contemporary pedotransfer functions used for land surface parameterization
A framework for quantifying hydrologic effects of soil structure across scales
Earth system models use soil information to parameterize hard-to-measure soil hydraulic properties based on pedotransfer functions. However, current parameterizations rely on sample-scale information which often does not account for biologically-promoted soil structure and heterogeneities in natural landscapes, which may significantly alter infiltration-runoff and other exchange processes at larger scales. Here we propose a systematic framework to incorporate soil structure corrections into pedotransfer functions, informed by remote-sensing vegetation metrics and local soil texture, and use numerical simulations to investigate their effects on spatially distributed and areal averaged infiltration-runoff partitioning. We demonstrate that small scale soil structure features prominently alter the hydrologic response emerging at larger scales and that upscaled parameterizations must consider spatial correlations between vegetation and soil texture. The proposed framework allows the incorporation of hydrological effects of soil structure with appropriate scale considerations into contemporary pedotransfer functions used for land surface parameterization
- …