4,040 research outputs found
Magnetic Bags and Black Holes
We discuss gravitational magnetic bags, i.e. clusters of large number of
monopoles in presence of gravitational effects. Physics depends on the
dimensionless ratio between the vev of the Higgs field at infinity and the
Planck mass. We solve the equations for the gravitational bags, and study the
transition from monopole to black hole. The critical coupling for this
transition is , and it is larger than that of
a single 't Hooft-Polyakov monopole. We investigate in detail the black-hole
limit.Comment: 20 pages, 12 figures; v2 small change
Born Reciprocity and Cosmic Accelerations
The trans-Planckian theory is a model that realizes concretely the Born
reciprocity idea, which is the postulate of absolute equivalence between
coordinate and momenta . This model is intrinsically global, and thus it
is naturally implemented in a cosmological setting. Cosmology and Born
reciprocity are made for each other. Inflation provides the essential mechanism
to suppress the terms coming from the dual part of the action. The
trans-Planckian theory provides an explanation for the present acceleration of
the universe scale factor. This is possible just considering a simple model
that contains gravity, one gauge field plus one matter field (to be identified
with dark matter), together with the reciprocity principle.Comment: 22 pages, 5 figures. v2: minor corrections. v3: book chapter of
"Advances in Dark Energy Research". v4: some correction
Instanton Bags, High Density Holographic QCD and Chiral Symmetry Restoration
We describe the simplest example of an instanton bag in Euclidean space. It
consists of a monopole wall and a Kaluza-Klein monopole wall, lifted to one
higher dimension, trapping the instanton charge in the middle. This object has
finite instanton density in a three-dimensional volume.
Baryon physics in holographic QCD models gets translated into a
multi-instanton problem in the bulk, and a state with a high density baryonic
charge consists of a non-diluted multi-instanton solution. The instanton bag is
a good candidate for this high-density state. We compute its parameters via
moduli stabilization. Chiral symmetry restoration is exhibited by this state,
and it is a direct consequence of its non-diluted features.Comment: 32 pages, 11 figures; v2: revised version, accepted on pr
Baby Skyrme Model, Near-BPS Approximations and Supersymmetric Extensions
We study the baby Skyrme model as a theory that interpolates between two
distinct BPS systems. For this a near-BPS approximation can be used which,
however, involves a small deviation from each of the two BPS limits. We provide
analytical explanation and numerical support for the validity of this
approximation. We then study the set of all possible supersymmetric extensions
of the baby Skyrme model with and the particular ones with
extended supersymmetries and relate this to the above mentioned
almost-BPS approximation.Comment: 23 pages, 5 figures, v2: explanations adde
A Note on Chern-Simons Solitons - a type III vortex from the wall vortex
We study some properties of topological Chern-Simons vortices in 2 + 1
dimensions. As has already been understood in the past, in the large magnetic
flux limit, they are well described by a Chern-Simons domain wall, which has
been compactified on a circle with the symmetric phase inside and the
asymmetric phase on the outside. Our goal is two-fold. First we want to explore
how the tension depends on the magnetic flux discretized by the integer n. The
BPS case is already known, but not much has been explored about the non-BPS
potentials. A generic renormalizable potential has two dimensionless parameters
that can be varied. Variation of only one of them lead to a type I and type II
vortex, very similar to the Abrikosov-Nielsen-Olesen (ANO) case. Variation of
both the parameters leads to a much richer structure. In particular we have
found a new type of vortex, which is type I-like for small flux and then turns
type II-like for larger flux. We could tentatively denote it a type III vortex.
This results in a stable vortex with number of fluxes which can be greater than
one. Our second objective is to study the Maxwell-Chern-Simons theory and and
understand how the large n limit of the CS vortex is smoothly connected with
the large n limit of the ANO vortex.Comment: 27 pages, 17 figures; v2.: references added, subsection 3.2 added,
explanation added in section 2.
Comments on Critical Electric and Magnetic Fields from Holography
We discuss some aspects of critical electric and magnetic fields in a field
theory with holographic dual description. We extend the analysis of
arxiv:1109.2920, which finds a critical electric field at which the Schwinger
pair production barrier drops to zero, to the case of magnetic fields. We first
find that, unlike ordinary weakly coupled theories, the magnetic field is not
subject to any perturbative instability originating from the presence of a
tachyonic ground state in the W-boson spectrum. This follows from the large
value of the 't Hooft coupling \lambda, which prevents the Zeeman interaction
term to overcome the particle mass at high B. Consequently, we study the next
possible B-field instability, i.e. monopole pair production, which is the
S-dual version of the Schwinger effect. Also in this case a critical magnetic
field is expected when the tunneling barrier drops to zero. These
Schwinger-type criticalities are the holographic duals, in the bulk, to the
fields E or B reaching the tension of F1 or D1 strings respectively. We then
discuss how this effect is modified when electric and magnetic fields are
present simultaneously and dyonic states in the spectrum can be pair produced
by a generic E - B background. Finally, we analyze finite temperature effects
on Schwinger criticalities, i.e. in the AdS-Schwarzshild black hole background.Comment: 33 pages, 4 figures; v2: refs added; v3: typos corrected, to appear
on JHE
Higher Winding Strings and Confined Monopoles in N=2 SQCD
We consider composite string solutions in N=2 SQCD with the gauge group U(N),
the Fayet--Iliopoulos term \xi \neq 0 and N (s)quark flavors. These bulk
theories support non-Abelian strings and confined monopoles identified with
kinks in the two-dimensional world-sheet theory. Similar and more complicated
kinks (corresponding to composite confined monopoles) must exist in the
world-sheet theories on composite strings. In a bid to detect them we analyze
the Hanany--Tong (HT) model, focusing on a particular example of N=2. Unequal
quark mass terms in the bulk theory result in the twisted masses in the N=(2,2)
HT model. For spatially coinciding 2-strings, we find three distinct minima of
potential energy, corresponding to three different 2-strings. Then we find
BPS-saturated kinks interpolating between each pair of vacua. Two kinks can be
called elementary. They emanate one unit of the magnetic flux and have the same
mass as the conventional 't Hooft--Polyakov monopole on the Coulomb branch of
the bulk theory (\xi =0). The third kink represents a composite bimonopole,
with twice the minimal magnetic flux. Its mass is twice the mass of the
elementary confined monopole. We find instantons in the HT model, and discuss
quantum effects in composite strings at strong coupling. In addition, we study
the renormalization group flow in this model.Comment: 41 pages, 11 figure
Quantum Fusion of Domain Walls with Fluxes
We study how fluxes on the domain wall world volume modify quantum fusion of
two distant parallel domain walls into a composite wall. The elementary wall
fluxes can be separated into parallel and antiparallel components. The parallel
component affects neither the binding energy nor the process of quantum merger.
The antiparallel fluxes, instead, increase the binding energy and, against
naive expectations, suppress quantum fusion. In the small flux limit we
explicitly find the bounce solution and the fusion rate as a function of the
flux. We argue that at large (antiparallel) fluxes there exists a critical
value of the flux (versus the difference in the wall tensions), which switches
off quantum fusion altogether. This phenomenon of flux-related wall
stabilization is rather peculiar: it is unrelated to any conserved quantity.
Our consideration of the flux-related all stabilization is based on
substantiated arguments that fall short of complete proof.Comment: 17 pages, 3 figure
The Skyrmion strikes back: baryons and a new large limit
In the large limit of QCD, baryons can be modeled as solitons, for
instance, as Skyrmions. This modeling has been justified by Witten's
demonstration that all properties of baryons and mesons scale with
in the same way as the analogous meson-based soliton model scales with a
generic meson-meson coupling constant . An alternative large limit
(the orientifold large limit) has recently been proposed in which quarks
transform in the two-index antisymmetric representation of . By
carrying out the analog of Witten's analysis for the new orientifold large
limit, we show that baryons and solitons can also be identified in the
orientifold large limit. However, in the orientifold large limit,
the interaction amplitudes and matrix elements scale with in the
same way as soliton models scale with the generic meson coupling constant
rather than as as in the traditional large limit.Comment: 10 pages, 26 figure
Confinement and Localization on Domain Walls
We continue the studies of localization of the U(1) gauge fields on domain
walls. Depending on dynamics of the bulk theory the gauge field localized on
the domain wall can be either in the Coulomb phase or squeezed into flux tubes
implying (Abelian) confinement of probe charges on the wall along the wall
surface. First, we consider a simple toy model with one flavor in the bulk at
weak coupling (a minimal model) realizing the latter scenario. We then suggest
a model presenting an extension of the Seiberg--Witten theory which is at
strong coupling, but all theoretical constructions are under full control if we
base our analysis on a dual effective action. Finally, we compare our findings
with the wall in a "nonminimal" theory with two distinct quark flavors that had
been studied previously. In this case the U(1) gauge field trapped on the wall
is exactly massless because it is the Goldstone boson of a U(1) symmetry in the
bulk spontaneously broken on the wall. The theory on the wall is in the Coulomb
phase. We explain why the mechanism of confinement discussed in the first part
of the paper does not work in this case, and strings are not formed on the
walls.Comment: 55 pp; v2: several remarks adde
- …