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Abstract: We discuss some aspects of critical electric and magnetic fields in a field the-

ory with holographic dual description. We extend the analysis of [1], which finds a critical

electric field at which the Schwinger pair production barrier drops to zero, to the case

of magnetic fields. We first find that, unlike ordinary weakly coupled theories, the mag-

netic field is not subject to any perturbative instability originating from the presence of

a tachyonic ground state in the W-boson spectrum. This follows from the large value

of the ’t Hooft coupling λ, which prevents the Zeeman interaction term to overcome the

particle mass at high B. Consequently, we study the next possible B-field instability, i.e.

monopole pair production, which is the S-dual version of the Schwinger effect. Also in this

case a critical magnetic field is expected when the tunneling barrier drops to zero. These

Schwinger-type criticalities are the holographic duals, in the bulk, to the fields E or B

reaching the tension of F1 or D1 strings respectively. We then discuss how this effect is

modified when electric and magnetic fields are present simultaneously and dyonic states in

the spectrum can be pair produced by a generic E − B background. Finally, we analyze

finite temperature effects on Schwinger criticalities, i.e. in the AdS-Schwarzshild black hole

background.
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1 Introduction

Low energy limits of string theories were originally found to be very similar to Quantum

Field Theories. Later some QFTs were found to be secretly equivalent to some string

theories. There are many subtle and less subtle differences between string theories and

field theories in flat space time. One such difference emerges in the presence of electric and

magnetic backgrounds.

In QED on one hand the presence of an electric field leads non perturbatively to

electron-positron pair production, yet this does not seen to produce a threat to the vacuum

stability, the electric field can be increased at will. The application of a magnetic field on

a QED like system containing electrically charged spin zero or spin one-half particles has

neither perturbative nor non perturbative destabilizing effects. If monopoles happen to

exist in the field theory, they will be pair produced in the magnetic field yet this process

will not render the vacuum unstable and will not set a limit on the possible value of the

magnetic field. The presence of a spin one charged particle, such as the W bosons, will

instead lead to a perturbative instability.

In string theory on the other hand the extended object properties of the states results

in an appearance of a maximally allowed value for the electric field. In the presence of

the magnetic field in flat space the roles are reversed with respect to the field theories.

The perturbative magnetic instability due to the presence of higher spin particles is much

softened by the extended nature of strings, and in many cases can also completely disappear

in some circumstances.

As one moves from flat space to an AdS like space which has a holographic field theory

dual, such a discrepancy can no longer be tolerated in some regions of the parameter

space. The question becomes if it is the field theory or the string theory character which
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will determine the behavior of the system in the presence of the electromagnetic fields. It

was found in [1] that it is the stringy character which dominates in the presence of the

electric field. In this work we study the issue in the presence of a magnetic field with and

without the electric field.

A common phenomenon in quantum field theories is the Schwinger effect: the pair

production of charged pairs, particle q and anti-particle q̄, induced by a background electric

field. The production rate probability per unit of time at leading order is

w ∝ e−πm2/eE (1.1)

where m is the particle mass, e the charge and E the electric field. The electric field

constantly pulls out of the vacuum q q̄ pairs with a well defined probability. Even when

the exponent πm2/eE becomes of order one and thus the production rate becomes large,

there are no indications of phase transitions. Just the formula (1.1) needs to be corrected

with higher order terms corresponding to multiple pair production.

In the Schwinger effect we see a clear-cut distinction between QED-like field theories

and string theories. In the latter, with electric charges that sit at the extremities of the

open string, there is a critical electric field at which a phase transition occurs. This is when

the force applied by the electric field on either of the charged ends becomes equal to the

string tension and the string thus breaks apart [2–4]:

eEcr =
1

2πα′
. (1.2)

At this value of E the pair production barrier drops to zero we cannot keep increasing

the electric field any longer. This is a real break down, the effective tension becomes zero

and the usual string description inappropriate. Note moreover that this criticality happens

also for neutral strings with opposite charges at the extremities and no Schwinger pair

creation [3–5].

But we know that some field theories are also equivalent to string theories. In this

case we would expect the field theory to behave in a “stringy way” when tested with

increasingly high electric fields, and thus to have a criticality at a certain finite value Ecr,

similar to (1.2), although now expressed exclusively in term of field theory parameters.

This problem was analyzed in [1, 6]. They considered N = 4 super Yang-Mills in the

Coulomb branch with a partial symmetry breaking SU(N + 1) → SU(N) × U(1), where

the U(1) massless gauge boson is to be thought as the above electro-magnetic field and the

massive W bosons plays the role of the charged particle to be pair created by the electric

field. When the gravity dual description is weakly coupled, that is large N and large ’t

Hooft coupling, they showed that the Schwinger pair production develops indeed a critical

instability at

Ecr =
2πm2

√
λ

, (1.3)

where λ is the ’t Hooft coupling and m the W boson mass [1]. This is the holographic

dual to the fact that in the bulk of AdS strings reach a critical point when the electric field

breaks them apart (1.2).
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We want here to analyze different aspects of this problem. The first generalization one

could ask is what happens if the system is probed with an external magnetic field instead of

an electric field. A magnetic field is known to induce a dual version of the Schwinger effect

if the theory admits magnetic charged particles, such as ’t Hooft-Polyakov monopoles. This

was studied in [7, 8] by computing the Euclidean worldline path integral of monopole loops.

The computational method turned out to be applicable also to the electric Schwinger effect

with S duality. Let’s take the SU(2) gauge theory with adjoint scalar field and Lagrangian

L = 1
4F

2 + (Dφ)2 − V (φ) and D = ∂ − igA. In the Higgs phase for the adjoint scalar

field, where 〈φ〉 = v and the gauge group is broken to U(1), we have in the spectrum the

W boson with mass mW = gv and the monopole with mass mM = 4πv/g. Electric field

induces Schwinger production of W+ W− pairs at a rate

wE→WW̄ ∝ e−πm2
W

/gE . (1.4)

Similarly a magnetic field induces monopole-antimonopole pair production at a rate

wB→MM̄ ∝ e−πm2
M

/g̃B , (1.5)

where g̃ = 4π/g is the magnetic coupling. The two processes are S-dual to each other,

with the S-duality transformation given by E → B, v → v, and g → g̃. We thus have

two typical scales, which we call ESchw and BSchw, where the Schwinger pair productions

become strong:

ESchw ≃ πm2
W

g
= πgv2 , BSchw ≃ m2

Mg

4
=

4π2v2

g
. (1.6)

Here by strong we mean that the probability is no longer exponentially suppressed and be-

yond these values the semiclassical treatment is no longer valid.1 Note that assuming weak

coupling g ≪ 1 and comparable magnitudes of field strengths E ≃ B, the monopole pair

production is suppressed with respect to the W pair production. The are two competing

effects here. The monopole coupling is higher by a factor 1/g2, but the monopole mass

squared is also higher by a factor 1/g4 and this dominates. The two scales (1.6) are then

related by the ratio ESchw : BSchw = 1 : 1/g2.

For the magnetic field there is also another effect which should be taken into account,

and turns out to be much more important than the monopole pair production. This is

the gyromagnetic instability of the W bosons spectrum. Fermions or scalar fields have no

instability in the magnetic field background. In QED for example nothing prevents from

increasing B to whatever value. this is not true instead for spin 1 W bosons. This instability

is due to the Zeeman effect, the coupling between spin and magnetic field proportional to

the gyromagnetic factor gS . For the W boson this factor is gS = 2, exactly the same as

the fermion, although its spin is twice. The energy squared of the W bosons is given by

1In QED ESchw ≃ 106EIon where EIon is the typical electric field that is necessary to ionize an atom.

This is why the Schwinger effect has not yet been experimentally observed, although this may soon change.

See for example [9] for a review.
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the classical solution of the Proca wave equation in the B field background. It is given by

the Landau level term plus the Zeeman term plus the bare mass term:

E2
n,↑↓ = (2n+ 1)gB ± gSgB · S +m2

W . (1.7)

The ground state is n = 0 with the spin-down along B and its square energy is E2
0,↓ =

−gB+m2
W . The Zeeman splitting between spin-up and spin-down states is 2gSgBS. Thus

there is always a critical magnetic field, which we denote Bgyro,
2 above which the ground

state is tachyonic

Bgyro =
m2

W

g
= gv2 . (1.8)

The existence of this instability is precisely due to the fact that the gyromagnetic factor is

gS = 2 and thus bigger than 1/S. For an electron there is no such an instability. This is a

vacuum instability, the ground state becoming tachyonic is the signal of a phase transition

which can be driven by the W condensate [12].3 Note that Bgyro is much smaller than

BSchw and thus, as we increase B, the gyromagnetic instability is reached long before the

monopole antimonopole pair production has any chance to become strong. So the story for

weakly coupled theories is the following. Schwinger pair production is the dominant effect

at large E and becomes strong at ESchw. For the magnetic field instead the monopole-

antimonopole pair production is not the dominant effect. The Bgyro instability is the most

important effect, it is the one encountered first.

Let us draw a comment about the perturbative versus non-perturbative nature of

those effects. The gyromagnetic instability (1.8) is a perturbative effect, it is the emer-

gence of a tachyonic state in the spectrum of W-bosons (1.7) and can be seen in pertur-

bative expansion. The Schwinger effect of W-bosons due to the electric field is instead

non-perturbative and can not be seen in any perturbative expansion being exponentially

suppressed like e−1/g.

The main part of the paper is devoted to the analysis of the same phenomenon when

the field theory is described by a holographic string theory in AdS space. One surprise

found in [1] is the emergence of a critical Ecr due to the string breakdown. We find another

surprise for the magnetic side of the problem. First there is no longer a gyromagnetic

instability, this effect simply disappears. The stringy behavior is again responsible for

this disappearance, in a similar way it was responsible for the existence of Ecr, through

the α′ corrections. The formula (1.7) for the W boson spectrum is valid only in the field

theory limit and in general it receives large α′ corrections as the dimensionless coupling

gBα′ becomes big [14, 15]. The field theory instability in the presence of a magnetic

field remains in string theory in a flat space time background as such a theory contains

Regge trajectories of particles with higher spin.4 We will explain in the paper why those

2For the lightest charged spin-1 particle, the ρ meson of QCD, the critical field is Bgyro ≃ 1016 Tesla

and thus very high indeed, although it can be reached in heavy ion collision (see for example [10, 11]). We

thank F. Bruckmann and Z. Komargodski for discussions about this issue.
3The other phase is in general believed to be the unbroken phase 〈φ〉 = 0 where the non-Abelian SU(2)

is restored and the transition happens through vortex formations driven by the W condensate.
4Magnetic instabilities in AdS are also considered in different set-ups in which the fields lives in the bulk

and not on a brane, see for example [16–18]. In those cases α′ corrections are not relevant.
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corrections completely wipe out the tachyonic instability of the ground state, even if the

magnetic field is taken arbitrarily large.

The absence of the gyromagnetic instability opens the possibility for the monopole pair

production to become significant. The rate of monopole pair production can be computed

in a similar way to the W boson pair production and a critical magnetic field Bcr exists

where the monopole-antimonopole barrier drops to zero. This is the S-dual version of the

previous effect. It happens when the B field reaches the magnitude needed to break the

D1-string. Although the D1 is much heavier than the F1, the coupling of the B field is also

stronger with the same factor, thus Bcr = Ecr. This phenomenon was first discussed for

flat space-time in [6]. We then also discuss the pair production of dyons and the effect of

having a generic E and B background simultaneously present. We will also study the case

of finite temperature and how the critical fields are changed by it. We will work in the quasi

classical approximation always,valid for large volumes,in which the branes do not yet move

significantly . We will make some comments on the issues involved in the last section.

The paper is organized as follows. In section 2 we introduce the theory in the holo-

graphic setting, we derive the critical electric field first found in [1]. In section 3 we discuss

the same situation but with a background magnetic field instead. We show that the gy-

romagnetic instability, which we would naively expect from weak coupling, is instead not

there at all. In section 4 we discuss pair productions for generic cases, electric field into W

bosons and magnetic field into monopoles, by computing the Euclidean bounce solution.

In section 5 we analyze the mixed problem in which both electric and magnetic fields are

present simultaneously. In section 6 we add temperature and study the thermal phase

diagram. We conclude in section 7 with some open questions.

2 Holographic setting

For a non-Abelian theory that contains charged particles and admits a holographic de-

scription we consider N = 4 SYM in the Coulomb branch with symmetry breaking

SU(N +1) → SU(N)×U(1). This is the simplest holographic realization of the Schwinger

effect were the unbroken U(1) is the electro-magnetism and the massive W bosons are the

charged particles to be pair created. The theory also admits monopoles and dyons and thus

a whole set of generalized versions of the Schwinger effect. The holographic setup is valid

in the limit of large N and large ’t Hooft coupling λ = g2N where the SU(N) unbroken

part is replaced by its geometric dual given by type IIB string theory on AdS5 × S5

ds2 = L2

(
dr2

r2
+ r2 dxµdxµ + dΩ2

5

)
(2.1)

where also N units of Ramond-Ramond flux pass through the S5 sphere. The remnant U(1)

is described in the bulk by a physical D3-brane located at a certain radius of AdS r0, later

to be related to the vev 〈φ〉 in the dual theory. Note that the coordinate r has dimension

of energy in these conventions. The gauge/gravity duality relates the parameters of the

bulk string theory theory, AdS radius L string coupling gs and string length ls, with the

ones of the dual theory, gauge coupling g or ’t Hooft coupling λ and N by L2/l2s =
√
λ/2π
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and gs = g2/4π. Making a vacuum choice in the Coulomb branch is dual to putting a D3

brane in the bulk, at a certain radius r0 and at a certain fixed point in the S5 sphere. The

W -bosons correspond to fundamental strings F1 stretched between the isolated D3-brane

and the Poincaré horizon at r = 0 with its mass given by the integrated tension

1

l2s

∫ r0

0

√
−dethab =

L2r0
l2s

=

√
λr0
2π

. (2.2)

where hab = diag(−L2r2, L2/r2) is the embedded worldsheet metric. This has to be equal

to the gauge theory mass mW = gv where v is the expectation value of the adjoint field

and provides the relation between the bulk and boundary variables r0 and v given by

v =
L2r0

2l2s
√
πgs

(2.3)

The Higgs breaking corresponds to moving along the Coulomb branch at 〈φ〉 = vtU(1)

where the generator is

tU(1) =
1√

2N(N + 1)
diag(N,−1, . . . ,−1) . (2.4)

The Coulomb branch is a flat direction in N = 4 SYM. The gravitational force pulls the

brane toward the infrared region r = 0 but the RR flux, which jumps from N to N + 1 as

we cross the brane at r0, provides the balance repulsive force. Thus r0 is also a flat modulus

in the bulk description. The position of the D3 brane in the S5 sphere corresponds to some

Higgs field, being in the vector representation of SO(6)R, acquiring an expectation value.

This could also be read from the fall off of the scalar field in the bulk dual to the Higgs

field in the boundary.

Locally one can always approximate a curved metric as a flat space-time metric. For

AdS we can do so by taking slices around a given radial position r ± δ with a certain

thickness δ. The metric is essentially Minkowsky flat provided δ is not too big. Making

the change of coordinate r → r′ = Lr/r0, xµ → x′µ = Lr0xµ we go into a frame where the

metric is manifestly ηµν and in these coordinates δ′ ≪ L is the condition for local flatness; in

the normal coordinates this is equivalently given by the condition δ ≪ r0. Local properties

of the D3-brane can be understood just by zooming into this flat space-time slice, this

being trustworthy as long as the string excitations which terminate on the brane do not

wonder out of the strip r0 ± δ. Here we can take the DBI action for the isolated D3-brane

which represents the unbroken U(1) is

SDBI =
1

gsl4s

∫
d4x′

√
−det(ηµν − l2sFµν, loc) (2.5)

where the suffix loc stands for the local ηµν frame. For a constant electric field the integrand

reduces to
√

1− l2sE
2
loc and becomes imaginary above the critical electric field Eloc, cr =

1/l2s equal to the string tension. Changing back coordinates from r′, x′µ to r, xµ we have to
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properly rescale the electric field E → Eloc = E/L2r20. This gives the critical electric field

as measured from the original coordinates (2.1):

Ecr =
r20L

2

l2s
=

2πm2

√
λ

. (2.6)

This is interpreted in [1] as the critical field in the dual theory where pair production

barrier drops to zero. Note that this derivation is entirely local, just a rescaling with the

appropriate redshift factors from the local inertial frame to the original one. Moreover it

is not about charged strings pair creation but neutral strings criticalities. Nevertheless we

will see later that the global derivation leads to the same answer. The basic reason is that

the Euclidean solution for the pair production is more and more localized near the brane

as we reach the critical value.

3 Absence of gyromagnetic instability

Now we discuss the magnetic field background and the disappearance of the gyromagnetic

instability, in the same setting as the previous section. The spectrum of open string in

constant B background and flat space-time is solvable exactly [13–15]. We will first review

those results and then discuss them in AdS.

Let us discuss first the case of a bosonic open string with charges q1 and q2 at the two

ends and q = q1 + q2 the total charge of the string.

S =

∫
dτdσL − q1

∫
dτAµ∂τX

µ|σ=σ1
+ q2

∫
dτAµ∂τX

µ|σ=σ2
(3.1)

where L = is the free string action and σi=1,2 refers to the two endpoints with charges

qi=1,2. We add a background magnetic field F12 = B. We can also consider a general case

in which the ends of the string are on two Dp branes at distance d with Dirichlet boundary

conditions for the coordinates xp+1,...26. The distance d is related in the field theory to the

value of the Higgs field vev v = d/4π3/2α′gs. The string spectrum can be computed exactly

since the presence of B does not affect the bulk equation of motion for the string but only

the boundary conditions on the two ends. The result for the bosonic spectrum is [14, 15]

α′E2 = n
∞∑

n=1

(a†nan + b†nbn)− ǫ
∞∑

n=1

(a†nan − b†nbn) + ǫb†0b0

−1 +
1

2
ǫ(1− ǫ) +

d2

4π2α′
(3.2)

where an and bn are the mode expansion in the coordinates affected by the magnetic

field x1 ± ix2 and have ordinary commutation relations. The dimensionless parameter ǫ is

given by

ǫ =
1

π
| arctan 2πα′q1B + arctan 2πα′q2B| (3.3)

and interpolates between ǫ ≃ 2α′qB for α′qiB ≪ 1 and ǫ → 1 for α′qiB → ∞. In the

formula (3.2) we have omitted all the possible excitations generated by transverse string
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fluctuations α⊥
n orthogonal to the B field which are not changed with respect to the free

string case and can be put to their ground state for simplicity. The spin operator in the

12-direction is

S =
∞∑

n=1

(a†nan − b†nbn) , (3.4)

and the Landau level is b†0b0 = N . For states at a given spin value S we are interested

in the ones which have minimal energy. Consequently we consider only the excited modes

b†0b0 to be the Landau level and a†1a1 to be the spin and so we can rewrite (3.2) as

α′E2 =
1

2
ǫ(1− ǫ) + ǫN + (1− ǫ)S +

d2

4π2α′
− 1 . (3.5)

This corresponds to the spin-down choice, the spin-up would be instead obtained by exciting

only b†1b1. In the weak field limit ǫ ≪ 1 this reduces to

E2 = (2N + 1)qB − 2qBS +
d2

4π2α′2
+

S − 1

α′
(3.6)

and this is precisely equivalent to (1.7) with gyromagnetic factor gs = 2 for every spin state.

Note that states with only a†1a1 6= 0 correspond to a minimal Regge trajectory whose mass

at zero magnetic field is given by

M2
S =

d2

4π2α′2
+

S − 1

α′
. (3.7)

The W boson is the one with spin S = 1, it is the first state in the Regge trajectory and

becomes massless for the case of coincident branes at zero distance d = 0. We are ignoring

here the zero spin state S = 0 which is a tachyon B = 0, d = 0. This state is the usual

bosonic string tachyon and shall be projected out in the superstring setting.

We can now discuss the tachyonic instability induced by the magnetic field. In the

field theory limit (3.6), for any given spin state in the Regge trajectory S ≥ 1, and any

given distance d between the two Dp branes, there is always a critical B field at which this

state becomes massless and above which it is tachyonic:

Bcr(S, d) =
d2 + 4π2α′(S − 1)

4π2α′2q(2S − 1)
. (3.8)

This Bcr(S, d) is a monotonic function of S and the lowest value, i.e. the first criticality, is

when the spin 1 state becomes tachyonic

Bcr(d) =
d2

4π2α′2q
. (3.9)

This is the gyromagnetic instability of (1.8). However when Bcr(d) is big enough, then the

small field approximation ǫ ≪ 1 is no longer valid and the exact string formula for the

spectrum (3.2) should be used instead of its field theory approximation (3.6). The source

of the tachyonic instability is in the Zeeman term −2qBS in (3.6) which comes from the

term −ǫS in the string formula (3.2). Since ǫ is saturating to a constant for large B (3.3),

– 8 –
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we expect a much milder instability in string theory than in field theory. To check if there

are criticalities, we may first send B → ∞, i.e. ǫ → 1, and then compute the distance

dcr at which a criticality disappears. This is given by dcr = 2π
√
α′. This means that the

gyromagnetic instability is completely absent once the inter-brane distance becomes bigger

than a critical distance which is of the order of string scale ls. Above this distance, no

matter how large the value of B is and whatever the value of S is, there are no tachyons

in the spectrum.

We can give a physical interpretation of this effect. When ǫ ≪ 1 the result (3.6) is

the same as the field theory in which the entire string fluctuating between the two branes

corresponds to a particle with some mass, spin and gyromagnetic factor. This can be

understood comparing the time scales in the system. The string spectrum, without a B

field, is MS = d/2πα′ + . . . where the dots contain all the possible excited oscillators of

the free string. The Larmor frequency for these massive states, considered as a definite

particle now, in the B field background is ωLarmor = qB/2MS . This has to be compared

to the frequency needed to see the internal structure of the string state which is that of

a generic fluctuation to propagate from one brane side to the other ωinternal = 1/d. When

ωLarmor ≪ ωinternal we can effectively consider the whole string state as a definite particle

with a certain mass MS moving in the B field background at a much lower frequency than

the one required to see its internal structure, and this is precisely the condition qBα′ ≪ 1.

When qBα′ ≫ 1 we are instead in a completely different regime. wLarmor is much

greater than winternal and consequently the string state cannot be considered anymore

as a free string moving slowly in the magnetic field background.The result of the exact

computation (3.2) tells us that the contribution to the mass squared coming from the

Zeeman interaction ceases to grow with B and instead saturates to the constant. We can

describe in more detail how the string states enter the tachyonic instability from (3.5) [15].

The slope of the Regge trajectory is set by the (1− ǫ)/α′ and so it is always positive and

becomes asymptotically flat in the limit B → ∞. A state in a given Regge trajectory

becomes tachyonic once ǫ reaches the value

ǫcr(N,S) =
1

2
+N − S +

√(
1

2
+N − S

)2

+ 2

(
d2

4π2α′2
+ S − 1

)
. (3.10)

In order for this to correspond to a real value Bcr it has to satisfy the condition ǫcr < 1.

This is possible to achieve only for the first Regge trajectory corresponding to the ground

state in the Landau levels N = 0. Moreover all the states in this fundamental trajectory

have the chance to become tachyonic for a certain value of B. The ǫcr(0, S) is growing with

S and reaching 1 asymptotically

ǫcr(0, 1) = −1

2
+

√
1

4
+

d2

2π2α′2
, . . . ǫcr(0,∞) = 1 . (3.11)

So we have established that, for distance lower than the critical d < dcr, all the states in

the first Regge trajectory, and only those, can become tachyonic for increasing values of
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S

E2 − d2

4π2α′2

S = 1
0

− 1
2α′ ǫ = 1

ǫ = 1
2

ǫ = 0

Figure 1. Evolution of the first Regge trajectory, spin-down, spectrum as B goes from 0 to ∞. The first

state S = 1 is the W boson. The trajectory slope flattens and becomes asymptotically flat as ǫ → 1. The

negative mass squared contribution becomes asymptotically constant.

B. The slope of the trajectories flattens as B → ∞. For d > dcr none of the string states

become tachyonic, for whatever value of the magnetic field.5

For superstrings there is little difference. In the Ramond sector there are no magnetic

instabilities at all. In the Neveu-Schwartz sector, where there are the W bosons, the

field theory instability is recovered for small values of B. The energy for the first Regge

trajectory is

α′E2 = − ǫ

2
+ ǫN + (1− ǫ)(S − 1) +

d2

4π2α′
. (3.12)

which is slightly different from the bosonic counter part (3.5), but has all the same qual-

itative features: the first trajectory N = 0 is the only one that can become tachyonic,

trajectories are flat as B → ∞, and most important above a critical distance dcr = π
√
2α′

no tachyons are allowed for any value of B (see figure 1).

Electric and magnetic instabilities can be also understood via T-duality. In a T-dual

perspective the electric field is a relative tilt between the two branes in space-time and

critically arises when the tilt is equal to the speed of light. In the case of the magnetic

field the T-dual correspond to a tilt of an angle θ in space directions where the angle is

related to the magnetic field by θ = πǫ. There is indeed an instability [20–22] related to

the relative tilting. Note that the tilt cannot exceed θ = π which is equivalent to a brane

parallel to an anti-brane and this is the geometric counterpart of the saturation limit ǫ → 1

as B → ∞. Using θ = π as an upper bound on the amount of negative contribution due

to the tilt, we find a critical distance dcr = π
√
2α′ above which there are no tachyons.

Now we return to our original problem. We have a stack of N D3 branes and one

isolated D3 separated by a distance d. A B field proportional to generator (2.4) is turned

on and the F1 strings stretched between the two branes have charges which in the large N

54d closed string background may also have exotic behavior under application of a constant magnetic

field, see for example in Heterotic string theory [19].
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limit can be taken to be q1 = 1/
√
2 + O(1/N) and q2 = O(1/N), where q1 and q2 refers

respectively to the isolated D3 and the stack of N D3’s. We are interested in the spectrum

of this configuration in a curved AdS geometry (2.1) where with the N branes are at the

far infrared r = 0 and the D3 at r = r0. We can consider an intermediate situation in

which the N D3 branes are placed at a generic radius r∗ between the infrared and r0 with

0 ≤ r∗ ≤ r0. This generic configuration interpolates between the problem in which we are

primarily interested in , which is the limit r∗ = 0 and a situation in which the distance

between the branes is so small that we can neglect the curvature of AdS. This is when

r0 − r∗ ≪ r0 and in this range we can use the previously given solution in flat space-time

for the string spectrum. Here we know that the gyromagnetic instability is there only at

very short distance and disappears when the distance, in the ηµν frame, reaches the critical

value. This is equivalent in the original coordinates to

(r0 − r∗)cr ≃
r0ls

2
√
πL

. (3.13)

First note that r0−r∗, cr ≪ r0, and this very important fact means that one is still inside the

safe zone for the flat space-time approximation to be valid. Second, and most importantly,

the physical situation in which we are interested, r∗ = 0 is well above the critical distance

and so much above any tachyonic instability. By continuity, we expect that even as r∗ → 0

we still remain outside the critical distance.6 Note that there is a small caveat in this

argument. The region of interest r∗ → 0 is well outside the flat space time safe zone. To

complete the argument we need some extra information, and this is that the ground state

energy is

1

l2s

∫ r0

r∗

√
−dethab =

√
λ(r0 − r∗)

2π
. (3.14)

Given this, and the fact that the critical distance is inside the flat space-time region and

can be computed (3.13), we can argue that r∗ = 0 does not have any tachyonic instability,

whatever the value of B.

We express the maximal shift of energy due to the magnetic field in terms of field

theory parameters. The energy squared spectrum of W bosons, in the B → ∞ limit, is

at most modified by a term which is at most ≃ 1/α′ in the local ηµν frame. This follows

from (3.12) in the ǫ → 1 limit which becomes E2 = −1/2α′ + d2/4π2α′2. This formula

holds in the flat space-time case. Embedding in AdS may add a order one coefficient in

front of the negative term, but will not effect its non leading character. Expressing this in

terms of dual boundary variables we get

E2
W = m2

W

(
1−O

(
1

λ1/4

))
(3.15)

The disappearance of the tachyonic instability is thus a large λ effect in the field theory

description as can be seem by the fact that the critical distance (3.13) is smaller with

respect to r0 by a factor ∝ 1/λ1/4.

6Note that this argument poses no restriction on r0, it just has to be greater than zero.
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4 Pair production

In this section we compute the rate of pair production of electro magnetically charged

particles in constant electric and magnetic fields. We review the results in flat space time

and adapt them to the case of theories which have an AdS dual. The calculation for a

constant magnetic field is new.

The method requires finding solutions of a Wick rotated theory which when rotated

back to Minkowski space correspond to a q-q̄ pair created at sufficient distance to escape

the barrier. We will do it first for the field theory and then for the holographic case.

We will adopt a general approach such to apply both to W and monopoles. We consider

a particle with mass m (mW and mM eventually), charged under a field F (E or B), with

a coupling q (g or g̃). This method of computing the particle pair creation rate has been

used in [7, 8]; we will look for a “worldline bounce”. The action for the worldline particle is

SE = m

∫
dτ
√
X ′2 − q

∫
AµdX

µ

= mP − qFA‖ (4.1)

where F = dA and in the second line we assumed the trajectory to be closed with a certain

perimeter P and an area A‖ along the field Fij . The bounce is a loop in the Euclidean

space which extremises the action. Given a generic loop we can always minimize the action

by projecting the entire orbit to the Fij plane; this will shorten the perimeter P by keeping

fixed A‖. We can then minimize further SE by taking the shape with maximal area for

a fixed perimeter, which a circular shape with radius R. The circular loop so obtained

depends only one variable R and the action becomes

S = m2πR− qFπR2 (4.2)

This time the extremum is not a minimum but a maximum. The extremum is at the

classical solution

Rcl =
m

qF
Scl =

πm2

qF
(4.3)

this extremised solution has one negative eigenvalue of the quadratic action when expanded

around it. It is the signal of an instability when interpreted as a tunneling in the Minkowski

space-time. A part from the translational zero modes, all the other eigenvalues are positive.

In the Euclidean formulation the trajectories of point like particles in a constant background

are closed circles in a plane perpendicular to F as opposed to the constantly accelerated

hyperboloids in Minkowski. This corresponds to the pair produced particles which, once

produced above the barrier, recede to each other with a constant acceleration. The pair

production probability is given by

w ∝ e−Scl (4.4)

with the pre-exponent factor given by the determinant of the positive modes.

We can then apply the formula to the two specific examples: W-bosons and monopoles

pair production. Formula (4.4) gives the probability of pair production (1.4) and (1.5)
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respectively. In both cases we have to take care that the worldline approximation is valid,

and that is that the bounce radius Rcl must be bigger than the particle size. For the W

boson we have to take the Compton wave length for the size, and Rct ≃ 1/mW exactly when

E becomes of order of ESchw. For the monopole instead we have to use its classical radius

rM ≃ 1/MW which is 1/g2 bigger than the Compton length. The worldline approximation

breaks down at B ≪ gv2 which is much smaller than BSchw and is by the way of the same

order of the perturbative instability Bgyro. So as long as the vacuum is stable the worldline

approximation is a good one.

Now let us analyze the problem in the holographic dual side. The W boson is replaced

in the bulk by an F1 string whose boundaries are located at the D3 brane and the Poincare

horizon. For the monopole we just have to replace the F1 with the D1 string, and the

Wilson with the ’t Hooft loop. Dyons are given by bound states F1-D1. Geometrically

the problem is the same for all cases and again can be treated in a unified way (see for

previous computation of this kind [6]). We will take a string with tension T (1/l2s for the

F1 or 1/gsl
2
s for the D1). The Euclidean configuration is a string worldsheet with one

circular boundary at the D3 brane at radius r0, the “worldsheet bounce”. The boundary

of the worldsheet is a loop with charge q under the field F on the brane worldvolume. The

Euclidean action is

SE = T
∫

dσdτ
√

det g2(σ, τ)− q

∫

boundary
dXµAµ (4.5)

where the first part is the Nambu-Goto action with g2(σ, τ) the pull-back metric and the

second couples the boundary charge to the field F = dA. This is a generalized version

of the field theory action (4.1) and we will see that in the weak field limit it gives the

same result.

We can use radial coordinates ρ, θ in the plane Fij and assume that the solution will

be invariant and only function of ρ. The geometry of the solution is a circular cap surface

with a radial profile given in figure 2. It is a surface which extremise the area and ends on

a loop of radius R on the D3-brane. As before we first minimize the Euclidean action in

all infinite directions apart from the size R which at the end must be maximized. For this

problem it is convenient to move to the coordinates z = 1/r where the metric is manifestly

conformally flat

ds2 =
L2

z2
(
dz2 + dxµdx

µ
)

(4.6)

The Euclidean action is then

SE = T
∫ R

0
dρ2πρ

(
L

z(ρ)

)2√
1 + z′(ρ)2 − qFπR2 (4.7)

where the profile z(ρ) is the one to be determined. A minimal surface in hyperbolic space

is given by a half sphere

z(ρ) =

√
R̃2 − ρ2 (4.8)

These are the stationary solutions to the first part of the action (4.7). This curve should

be truncated at z = z0 where the string ends on the D3 brane, since the part from 0 to z0
is not physical and z0 = z(R).
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R̃

γ

R

D3-brane

ρ

z

0z0

spherical cap

UV

Figure 2. Geometry of the worldsheet bounce. The dashed part is not physical, just a continuation of a

minimal surface solution in AdS to the UV boundary.

The curve is fixed once we determine the integration constant, i.e. the radius R̃ of the

sphere. The radius R is measured at z = z0 and is given by R2 + z20 = R̃2. The action as

a function of R has the following expression:

SE = T 2πL2

(√
1 +

R2

z20
− 1

)
− qFπR2 (4.9)

The maximization with respect to R is equivalent to the following balance of forces

T cos(γ) = qFloc (4.10)

The radius at the stationary point is given by

Rcl = z0

√( T L2

qFz20

)2

− 1 , (4.11)

and it leads to the action

SE cl = qFπz20

(( T L2

qFz20

)
− 1

)2

. (4.12)

A critical point is reached when radius R and classical action vanish. This happens at the

following critical value for the field

qFcr =
T L2

z20
(4.13)

where the radius R and also the classical action vanishes. This is when the sphere in

figure 2 becomes exactly tangent to the D3 brane and nothing is left for the physical cap.
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The easiest way to see what is the reason of the existence of this criticality is to look again

at the action as function of R (4.9). At large R is always dominated by the electro-magnetic

coupling and thus negative −qFπR2. At small R we can expand it and we have

SE =
T πL2R2

z20
− qFπR2 + . . . (4.14)

this is positive as long as F < Fcr and so we have a barrier. When F = Fcr the barrier

disappears and the vacuum becomes unstable. It is the stringy nature that makes the

small R behavior to be proportional to T R2 and thus in direct competition with the

electro-magnetic coupling. For particles instead (4.2) the small R behavior is proportional

to mR and thus there is always a barrier. Quantum correction to the Euclidean bounce

have been computed in [23] where they showed a the existence of a sub-leading correction

in λ but no qualitative change.7

The weak field limit F ≪ Fcr correspond to the field theory limit. In this case the

action becomes (4.2) with the mass

m =
T L2

z0
(4.15)

which is like (2.2) the one of a string with tension T stretched from z0 to the horizon at

z → ∞.

The result can be applied both to the W pair production and to the monopole pair

production. For the W we have T = 1/l2s and q = 1 from which we recover exactly the

critical field predicted by the DBI action (2.6). We now see why a purely local quantity gives

the correct answer, the classical solution is in fact localized near the D3 brane as E → Ecr.

For the magnetic case we have to use the D1 tension which is 1/gs ≫ 1/α′ greater than the

F1 tension. But the charge q is different also and is now equal to 4π/g2 = 1/gs. These two

factor cancel exactly in (4.13) and this gives a critical magnetic field exactly equal to the

critical electric field Bcr = Ecr. The point is that the D1 is heavier but also the coupling

to the B field is larger. The breaking point is at the same threshold (see also [6]).

Some comments related to S-duality in this context are in order. S-duality being a

non perturbative symmetry is generically broken if one maintains only the leading term in

large N large λ expansion, in particular the S-dual theory is not expected to be at weak

coupling. The leading terms in the pair-production probability turn out to be S-dual and

this to a certain extent is a surprise, as already noticed in [7]. We have not found at

this stage a BPS like argument to explain this. On the other hand note that one has not

found any reason to expect that any of these systems has a perturbative instability thus

an expectation that in an S-dual theory there is no magnetic perturbative instability while

also not rigorous, could be well entertained.

For the electric case we have two independent approaches which give the same answer.

Thus we can be very confident that the Ecr is indeed a physical critical point. For the

magnetic field we do not see any sign of instability from the DBI action. The DBI action

7In this respect it would be nice to see if the same quantum correction can be recovered by studying

higher loops terms in the DBI action.
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integrand is
√
1 + l2sB

2
loc for a constant magnetic field as opposed to

√
1− l2sE

2
loc for the

electric case. We thus do not see any local Bcr above which the action would cease to

make sense. But the DBI action on a flat brane is not required to know a D1-strings

pair production. Monopoles are in fact known to be well described near the D3 branes

also as BIons, which are spikes of the D3 brane and are solution of the non-linear DBI

equation [24, 25]. The Euclidean bounce involving a monopole loop would thus correspond

to a D3 brane with non-trivial topology. Note also the according to [26, 27] the S-dual of

the DBI action of the D3-brane is self-dual, i.e. it has the same functional form, and thus

would predict the same critical value for the field strength.

A qualitative argument for the emergence of the Ecr has been advocated in [1] also.

The disappearance of the tunneling barrier can be understood as a consequence of the

electro-magnetic potential between the two particles q − q̄. The potential for a W − W̄

pair created at a distance d is Veff W (d) = 2mW − Ed − α/d where the last term is the

attractive potential and the coefficient α can be taken from the W-boson Wilson loop on the

boundary of AdS and it is α = 4π2
√
λ/Γ4(1/4). The barrier disappears when Veff W (d) =

V ′
eff W (d) = 0 which happens for dcr = α/mW and Ecr = m2/α ≃ .7 × 2πm2

W /
√
λ. This

is a crude approximation to the Euclidean bounce, for which we have instead dcr = 0 and

Ecr = 2πm2
W /

√
λ, but it gives nevertheless a possible intuitive interpretation from the dual

boundary theory perspective.8 The very same argument is applicable also for monopoles

pair production. In this case the potential is Veff M (d) = 2mM − Bd4π/g2 − α/gsd where

the extra gs in the final term is necessary to convert the Wilson loop into a ’t Hooft

loop. So one obtain, up to an over all multiplicative factor, that Veff M = Veff W 4π/g2

and so Bcr = Ecr.

5 Mixed E and B

We can now ask what is the effect of a combination of magnetic and electric fields on

the pair production rate and the related instability. There are two effects which should

be taken into account. The first one is an indirect effect of the magnetic field on the

pair production of W-bosons which is made manifest by relativistic invariance. One can

decompose the magnetic field with respect to the direction of the electric field direction,

a parallel component B‖ along the electric field and a perpendicular one B⊥. The DBI

determinant inside the square root of the action (2.5) in the local frame is

− det




−1 l2sEloc

−l2sEloc 1 l2sBloc ⊥

−l2sBloc ⊥ 1 l2sBloc ‖

−l2sBloc ‖ 1


 (5.1)

which is

1− l4s(E
2
loc −B2

loc ‖ −B2
loc ⊥) + l8sE

2
locB

2
loc ‖ . (5.2)

8The very same argument could also be applied for weakly coupled theories, such as QED. It would

predict also for this a critical field, but incredibly big Ecr ≃ ESchw/g
2.
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The second term is just the invariant FµνF
µν , the third is a higher order term F 4. The

critical field value is that which makes (5.1) vanish

Eloc cr =
1

l2s

√√√√1 + l4s(B
2
loc ‖ +B2

loc ⊥)

1 + l4sB
2
loc ‖

. (5.3)

Bringing it back to the original frame and expressing it in terms of the boundary field

theory parameters leads to

Ecr =
2πm2

√
λ

√√√√1 +
B2

⊥
4π2m4

λ +B2
‖

. (5.4)

We see that the critical value of E is in general increased by the presence of a B field.

There is no change at all if the perpendicular component vanishes, as it can be seen by

the fact that (5.1) factorizes once that component vanishes. The parallel component has

also an higher order effect in mitigating the enhancement due to the perpendicular one.

The previous result can also be obtained using Lorentz invariance, first by boosting to a

reference frame where B⊥ = 0 and Ecr is 1/l
2
s independently of B‖, and then boosting back

to the original frame. The square root in (5.4) is a Lorentz transformation factor. This

problem was also considered in [28] for branes in flat space-time.

A second effect to be considered is that with generic E and B fields any kind of dyonic

state can also be pair produced. To understand the E-B phase diagram we need to take

into account all of them. The first thing to do is to get rid of the previously discussed effect

and go to a boosted frame where E and B are parallel. We have then reduced the problem

to a two dimensional phase diagram. Then we have to take into account the dyonic states

in the spectrum. Let us denote a dyon with charges N = (ne, nm) so that the W bosons is

a (1, 0) and the monopole a (0, 1). The mass is given by

m(ne,nm) = vg

√
n2
e +

16π2n2
m

g4
. (5.5)

Finally we compute the pair production probability for any generic E-B and any generic

(ne, nm). The functional to extremise is always of the form (4.7). The tension is given by

the bound state of D1-F1 strings

T(ne,nm) =
1

l2s

√
n2
e +

n2
m

g2s
(5.6)

which is proportional to the particle mass (5.5). The last piece to be defined is the force

on the extremities which was denoted as qF in the action (4.7) and now is given by the

sum of the two forces being them parallel to each other

qF = gE +
4πB

g
. (5.7)
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Figure 3. Sub-critical zone in the E-B plane in the frame where they are parallel to each other. The

various lines correspond to eq. (5.8) for all the states in the spectrum.

Then we finally use the critical field computed in (4.13) and we have

Ene +B
4πnm

g2
=

2πm2

√
λ

√

n2
e +

(
4πnm

g2

)2

(5.8)

Note that this is manifestly SL(2, Z) invariant. This equation should be intended as defining

a critical line in the E-B plane due to the dyon (ne, nm). Actually in the semiclassical

spectrum we have only the states with charges (n, 1) and (1, 0). Combining all the particle

in the spectrum we have the phase diagram in figure 3. The region of the phase diagram

which is safe from any criticalities is the one contained below the envelop of the various

lines. Figure 3 correspond to a particular choice of the coupling g = 2. The shape of the

no-critical region is coupling dependent, in particular it interpolates between the circle and

the square as the coupling g goes from zero to infinity:

√
E2 +B2 ≤ 2πm2

√
λ

g → 0

|E|, |B| ≤ 2πm2

√
λ

g → ∞ . (5.9)

6 Thermal excursion

In the presence of temperature the critical behavior is changed, we study the modifications

of the pair production and criticality features at finite temperature. A thermal state

corresponds in the bulk to the Schwarzshild AdS black hole

ds2 = L2


−

(
r2 − r4h

r2

)
dt2 +

dr2(
r2 − r4

h

r2

) + r2dxidxi + dΩ2
5


 (6.1)

– 18 –



J
H
E
P
0
1
(
2
0
1
3
)
1
7
4

with horizon at rh and temperature of the dual boundary theory given by

T =
rh
π

(6.2)

The probe D3-brane sits at r0 and the mass of the W boson is still given by eq. (2.2), see

also [29, 30] for earlier works on the same configuration. At finite temperature there is

no more cancellation of forces and the probe brane feels a net attractive force toward the

black-hole. Here we will not have to deal with this effect since we shall be mostly interested

in finding the critical value of E and B fields.

We first derive the critical electric field as in section 2, which means that we will

compute it locally with the opportune scaling factors. The effect of the presence of an

electric field effect is to shift the string tension. The effective string tension is locally

given by:

Teff, loc =
1

ℓ2s

(
1− ℓ4sE

2
loc

)
(6.3)

with

Eloc = − E√−g00gii
=

E

L2r20

√
1− r4

h

r40

(6.4)

the dependence on the temperature enters in g00. The critical electric field is thus given by

Ecr(T ) =
L2r20
l2s

√
1− r4h

r40

=
2πm2

√
λ

√
1− T 4λ2

16m4
(6.5)

expressed in both bulk and boundary quantities. This gives a curve in the (E, T ) plane

that interpolates between the zero temperature critical Ecr of (2.6) and the temperature

at which the horizon coincide with the D3-brane position rh = r0. The sub-critical zone is

the one inside this curve (see figure 4).

Now we have to find the bounce solution like in section 4. Again we expect the previous

result to be correct because near the criticality the bounce solution should shrink to zero

size and thus should be dependent only on local space-time properties. This will not only

confirm the previous result for the electric field, but also give the temperature dependence

of the critical magnetic field Bcr(T ). By changing the coordinates by the transformation

z = 1/r and continuing to Euclidean space (6.1) becomes

ds2 =
L2

z2



(
1− z4

z4h

)
dτ2 +

dz2(
1− z4

z4
h

) + dxidxi


 (6.6)

The Euclidean time is compactifyed with τ = τ+πzh in order for the geometry to be smooth

at the horizon leading to thermal behavior (6.2). We search for the classical stationary

solution of the string action (4.7) in this new metric. The bounce is not longer circular
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symmetrical in x, τ , so that a generic solution would require to solve a partial differential

equation. But if we want just to study the near to critical regime, i.e. to check the critical

line (6.5), the shape of the bounce is roughly ellipsoidal, and can be made circular with a

change of coordinates. We call the factor

γ(z) = 1− z4

z4h
, (6.7)

and we do the following change of coordinates

τc = γ(z)τ xc =
√
γ(z)x (6.8)

Then the metric becomes

ds2 =
L2

z2γ(z)

(
dτ2c +

(
1 +

γ′(z)2τ2c
γ(z)2

+
γ′(z)2x2c
4γ(z)

)
dz2 + dx2c

)
(6.9)

where γ′(z) is the derivative respect to z. Neglecting the terms with derivative of γ, later

to be checked when possible, the metric simplifies to

ds2 =
L2

z2γ(z)

(
dτ2c + dz2 + dx2c + . . .

)
(6.10)

We can solve the bounce by using a circular symmetric ansatz with a profile z(ρ) given by

a slightly deformed version of (4.7):

SE = T
∫ R

0
dρ2πρ

L2

z(ρ)2
(
1− z(ρ)4

z4
h

)
√
1 + z′(ρ)2 − qFcπR

2 (6.11)

From the change of variables in (6.8)

Fc =
F

γ(z)3/2
. (6.12)

Since the bounce is circular τc = xc = R at most. And the two conditions for γ′ terms to

be negligible are satisfied by the most stringent one

R ≪ γ(z)

γ′(z)
=

z4h
4z3

(
1− z4

z4h

)
. (6.13)

Another condition to impose is that the circle of the bounce R is smaller than the com-

pactification scale of τ . This condition is

R ≪ πzh
2

(
1− z4

z4h

)
(6.14)

and this is a stronger inequality than (6.13).

Yet we can make a further approximation. Let us consider the terms L2/z(ρ)2 in

the functional action (4.7), this is modified into L2/z(ρ)2γ(z(ρ)) in (6.11) and this makes

no longer valid the nice integrable solution (4.8). But when the bounce z-thickness δz =
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zmax−z0 is not too deep, to be quantified later, we can reduce exactly to the functional (4.7).

Making the following change of coordinates

z̃ = z − 2z50
z40 + z4h

L̃ =
z̃0

z0
√
γ(z0)

L (6.15)

which is just a translation in z and a rescaling of the AdS radius L, the canonical functional

SE = T
∫ R

0
dρ2πρ

L̃2

z̃(ρ)2

√
1 + z̃′(ρ)2 − qFcπR

2 (6.16)

has the same local behavior of (6.11) provided

1− L̃2

z̃2
z2γ(z)

L2
≪ 1 (6.17)

which after some rearrangements reduces to the condition

1− γ(z)3

γ(z0)
(
1 +

z40
z4
h

− 2z50
zz4

h

)2 ≪ 1 (6.18)

We can then use the solution of section 4 and we have for the bounce radius

Rcl = z̃0

√√√√
(

T L̃2

qFcz̃20

)2

− 1 (6.19)

=
z0(−z40 + z4h)

z40 + z4h

√( T L2

γ(z0)qFcz20

)2

− 1 (6.20)

and for the critical field

Fcr, c =
T L2

qγ(z0)z20
⇒ Fcr =

T L2
√
γ(z0)

qz20
(6.21)

which then confirms the local derivation (6.5).

We can check that the two approximations become in fact increasingly good near the

critical line. The first condition is that the bounce radius is smaller than the compactifica-

tion radius of the Euclidean time τ (6.14). This is also strong enough to imply the (6.13)

condition regarding the smallness of the γ′ terms in the metric (6.9). Using (6.19) we can

rewrite (6.14) as

2T
√
λm

π
(
1 + T 4λ2

16m4

)
√

Fcr(T )2

F 2
− 1 ≪ 1 (6.22)

which is increasingly well satisfied as F → Fcr(T ). The other condition (6.18) should be

evaluated at the tip of the bounce given by z̃max = z̃0Fcr/F , and finally it becomes

1−

(
1− T 4λ2F 4

16m4Fcr(T )4

)3

(
1− T 4λ2

16m4

)(
1 + T 4λ2

16m4 − 2 T 4λ2F
16m4Fcr(T )

)2 ≪ 1 (6.23)
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Figure 4. Phase diagram F -T . Contour plots respectively of the parameter expansion (6.22) for the left

panel and (6.23) for the right panel.

which again is increasingly well satisfied as F → Fcr(T ). So we have an entire region,

inside the sub-critical zone and close to the critical line Ecr(T ) which can be treated in

this approximation. In figure 4 this is represented with normalization Fcr(T = 0) = 1 and

Tcr = 1. We also plot the lines where the conditions (6.22) and (6.23) become of order one

and thus are violated.

The formula (6.21) can then be applied to any configuration in which dyons are pair

produced by parallel E and B and formula (5.8) corrected by thermal effects becomes

Ene +B
4πmm

g2
=

2πm2

√
λ

√
1− T 4λ2

16m4

√

n2
e +

(
4πnm

g2

)2

(6.24)

There is thus a universal correction proportional to
√
γ(r0) =

√
1− T 4λ2

16m4 and the domain of

sub-critical E and B has the same shape of figure 3 and is opportunely rescaled by
√
γ(r0).

7 Conclusions and open questions

We discussed some issues related to Schwinger pair creation, electric and magnetic, in a

context where the holographic description is weakly coupled. In the electric case it was

shown in [1] that a critical electric field exists at which the pair production barrier drops

to zero. In the magnetic analog we showed that again the stringy nature brings about a

surprise. A critical instability which is generically present at weak coupling in field theory,

manifested by the emergence of a tachyonic ground state in the W boson spectrum at the

value Bgyro of the magnetic field, disappears completely in the holographic set up. The

trend is opposite to that of the electric field but the underlying reason is the same: the α′

corrections. We have deployed the same method of [1, 6] to study in a unified way the pair

creation for W bosons and for monopoles or any other dyonic state in the spectrum. In

the last part of the paper we described the generalized phase diagram with E, B and also

their temperature dependence.
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There are a number of issues which require a better understanding. One involves

the argument for the absence of the gyromagnetic instability. For that we relied on the

exactly known spectrum of open strings in the background magnetic field in flat space, in

particular we showed that in the AdS case the effective system of branes are separated by

a distance which is well above the distance threshold above which the tachyons disappear.

The argument is rather convincing but does not constitute a rigorous proof. It would be

interesting to uncover the exact spectrum of open strings in an AdS and magnetic field

background on the D3 brane, perhaps by using integrability properties, to confirm this

statement. Moreover it would be interesting to study also the non-Abelian case in which,

at weak coupling, the analog of the gyromagnetic instability is known to occur due to a

tachyon in the charged gluons spectrum [31]. The argument of section 3 is applicable only

to the Coulomb phase, but it seems to suggest that the gyromagnetic instability should be

absent also in the non-Abelian phase.

Another open issue regards the critical field Bcr found in section 4. The unified analysis

of pair creation suggests that there should be a critical magnetic field when the D1 string

gets broken. Unfortunately in this regime, the treatment of section 4 becomes questionable.

Indeed, since the bounce action evaluates to zero, a semiclassical expansion is no longer

obviously valid. For the electric case one has a backup argument since also the DBI action

has an instability which gives the same result. For the magnetic case the DBI action shows

no signs of an instability at Bcr. This may be due to the fact that in the analysis in

section 4 we neglected the back-reaction of the string on the D3 brane on which it ends,

and this may be significant for the D1 string. To compute the pair creation probability

near Bcr we should thus deploy a more powerful method which does take into account the

back-reaction.

Finally we want to discuss the problem of the ultimate fate of the brane when electric

or magnetic fields are turned on. We said that the BPS-ness of the system is broken by

the field, and the gravitational force is no longer balanced by the RR flux force. This

implies a net force toward the IR region of AdS. In other words a brane with a field

turned on is rolling toward the r → 0, just by classical forces with a certain time scale.

On the other hand we have the Schwinger pair production effect. First of all we want

to stress that the computation of the pair production probability, which has been done

considering the brane as static, always makes sense for appropriately large volumes. Note

that the classical dynamics has a natural time scale for the brane to reach the IR. The

pair production is instead a probability per unit of time and per unit of volume. For

sufficiently large volumes, pairs are pair produced much before the brane starts to move.

So pair production can always be considered as a quasi-static process. On the other hand

an important question to ask is how the pair production is affecting the classical fall of the

brane. This is likely to be more and more important near the critical value for the fields Fcr

where the barrier for the pair production drops and the production becomes classical, and

no longer suppressed by quantum tunneling. To determine the ultimate fate of the brane

is a harder problem left for the future, and involves understanding of the back reaction of

the pair produced particles on the brane, and in particular the dynamics of pair production

near the critical value when the barrier drops.
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