59 research outputs found

    Definition of Naturally Processed Peptides Reveals Convergent Presentation of Autoantigenic Topoisomerase I Epitopes in Scleroderma.

    Get PDF
    ObjectiveAutoimmune responses to DNA topoisomerase I (topo I) are found in a subset of scleroderma patients who are at high risk for interstitial lung disease (ILD) and mortality. Anti-topo I antibodies (ATAs) are associated with specific HLA-DRB1 alleles, and the frequency of HLA-DR-restricted topo I-specific CD4+ T cells is associated with the presence, severity, and progression of ILD. Although this strongly implicates the presentation of topo I peptides by HLA-DR in scleroderma pathogenesis, the processing and presentation of topo I has not been studied.MethodsWe developed a natural antigen processing assay (NAPA) to identify putative CD4+ T cell epitopes of topo I presented by monocyte-derived dendritic cells (mo-DCs) from 6 ATA-positive patients with scleroderma. Mo-DCs were pulsed with topo I protein, HLA-DR-peptide complexes were isolated, and eluted peptides were analyzed by mass spectrometry. We then examined the ability of these naturally presented peptides to induce CD4+ T cell activation in 11 ATA-positive and 11 ATA-negative scleroderma patients.ResultsWe found that a common set of 10 topo I epitopes was presented by Mo-DCs from scleroderma patients with diverse HLA-DR variants. Sequence analysis revealed shared peptide-binding motifs within the HLA-DRβ chains of ATA-positive patients and a subset of topo I epitopes with distinct sets of anchor residues capable of binding to multiple different HLA-DR variants. The NAPA-derived epitopes elicited robust CD4+ T cell responses in 73% of ATA-positive patients (8 of 11), and the number of epitopes recognized correlated with ILD severity (P = 0.025).ConclusionThese findings mechanistically implicate the presentation of a convergent set of topo I epitopes in the development of scleroderma

    Oxidative stress-dependent activation of collagen synthesis is induced in human pulmonary smooth muscle cells by sera from patients with scleroderma-associated pulmonary hypertension

    Get PDF
    Pulmonary arterial hypertension is a major complication of systemic sclerosis. Although oxidative stress, intima hyperplasia and a progressive vessel occlusion appear to be clearly involved, the fine molecular mechanisms underpinning the onset and progression of systemic sclerosis-associated pulmonary arterial hypertension remain largely unknown. Here we shows for the first time that an increase of NADPH-derived reactive oxygen species production induced by sera from systemic sclerosis patients with pulmonary arterial hypertension drives collagen type I promoter activity in primary human pulmonary artery smooth muscle cells, suggesting that antioxidant-based therapies should be considered in the treatment of systemic sclerosis-associated vascular diseases

    PTP4A1 promotes TGFβ signaling and fibrosis in systemic sclerosis.

    Get PDF
    Systemic sclerosis (SSc) is an autoimmune disease characterized by fibrosis of skin and internal organs. Protein tyrosine phosphatases have received little attention in the study of SSc or fibrosis. Here, we show that the tyrosine phosphatase PTP4A1 is highly expressed in fibroblasts from patients with SSc. PTP4A1 and its close homolog PTP4A2 are critical promoters of TGFβ signaling in primary dermal fibroblasts and of bleomycin-induced fibrosis in vivo. PTP4A1 promotes TGFβ signaling in human fibroblasts through enhancement of ERK activity, which stimulates SMAD3 expression and nuclear translocation. Upstream from ERK, we show that PTP4A1 directly interacts with SRC and inhibits SRC basal activation independently of its phosphatase activity. Unexpectedly, PTP4A2 minimally interacts with SRC and does not promote the SRC-ERK-SMAD3 pathway. Thus, in addition to defining PTP4A1 as a molecule of interest for TGFβ-dependent fibrosis, our study provides information regarding the functional specificity of different members of the PTP4A subclass of phosphatases

    Patient-reported outcome instruments for assessing Raynaud’s phenomenon in systemic sclerosis:A SCTC vascular working group report

    Get PDF
    The episodic nature of Raynaud's phenomenon (RP) in systemic sclerosis (SSc) has led to a reliance on patient-reported outcome (PRO) instruments such as the Raynaud's Condition Score (RCS) diary. Little is known about the utilisation in routine clinical practice and health professional attitudes towards existing PRO instruments for assessing SSc-RP. Members of the Scleroderma Clinical Trials Consortium Vascular Working Group (SCTC-VWG, n=28) were invited to participate in a survey gauging attitudes towards the RCS diary and the perceived need for novel PRO instruments for assessing SSc-RP. Nineteen SCTC-VWG members (68% response rate) from academic units based in North America (n=9), Europe (n=8), South America (n=1) and Australasia (n=1) took part in the survey. There was broad consensus that RCS diary returns could be influenced by factors including seasonal variation in weather, efforts made by patients to avoid or ameliorate attacks of RP, habituation to RP symptoms, evolution of RP symptom characteristics with progressive obliterative microangiopathy, patient coping strategies, respondent burden and placebo effect. There was consensus that limitations of the RCS diary might be a barrier to drug development (79% of respondents agree/strongly agree) and that a novel PRO instrument for assessing SSc-RP should be developed with the input of both clinicians and patients (84% agree/strongly agree). Perceived potential limitations of the RCS diary have been identified along with concerns that such factors might impede drug development programs for SSc-RP. There is support within the systemic sclerosis community for the development of a novel PRO instrument for assessing SSc-RP

    A methodology for exploring biomarker – phenotype associations: application to flow cytometry data and systemic sclerosis clinical manifestations

    Full text link
    BACKGROUND: This work seeks to develop a methodology for identifying reliable biomarkers of disease activity, progression and outcome through the identification of significant associations between high-throughput flow cytometry (FC) data and interstitial lung disease (ILD) - a systemic sclerosis (SSc, or scleroderma) clinical phenotype which is the leading cause of morbidity and mortality in SSc. A specific aim of the work involves developing a clinically useful screening tool that could yield accurate assessments of disease state such as the risk or presence of SSc-ILD, the activity of lung involvement and the likelihood to respond to therapeutic intervention. Ultimately this instrument could facilitate a refined stratification of SSc patients into clinically relevant subsets at the time of diagnosis and subsequently during the course of the disease and thus help in preventing bad outcomes from disease progression or unnecessary treatment side effects. The methods utilized in the work involve: (1) clinical and peripheral blood flow cytometry data (Immune Response In Scleroderma, IRIS) from consented patients followed at the Johns Hopkins Scleroderma Center. (2) machine learning (Conditional Random Forests - CRF) coupled with Gene Set Enrichment Analysis (GSEA) to identify subsets of FC variables that are highly effective in classifying ILD patients; and (3) stochastic simulation to design, train and validate ILD risk screening tools. RESULTS: Our hybrid analysis approach (CRF-GSEA) proved successful in predicting SSc patient ILD status with a high degree of success (>82 % correct classification in validation; 79 patients in the training data set, 40 patients in the validation data set). CONCLUSIONS: IRIS flow cytometry data provides useful information in assessing the ILD status of SSc patients. Our new approach combining Conditional Random Forests and Gene Set Enrichment Analysis was successful in identifying a subset of flow cytometry variables to create a screening tool that proved effective in correctly identifying ILD patients in the training and validation data sets. From a somewhat broader perspective, the identification of subsets of flow cytometry variables that exhibit coordinated movement (i.e., multi-variable up or down regulation) may lead to insights into possible effector pathways and thereby improve the state of knowledge of systemic sclerosis pathogenesis. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12859-015-0722-x) contains supplementary material, which is available to authorized users

    The role of the acquired immune response in systemic sclerosis

    No full text
    Profound alterations characterize the adaptive immune response in systemic sclerosis, and several layers of evidence support a prominent role exerted by immune cellular effectors and humoral mediators in the pathogenesis of this disease. These include (i) the presence of oligoclonal T cells in tissues undergoing fibrosis consistent with (auto)antigen-specific recruitment, (ii) the preferential expansion of polarized CD4+ and CD8+ T cells producing pro-fibrotic cytokines such as IL-4 and IL-13, (iii) the presence of increased number of cells producing mediators belonging to the IL-17 family, including IL-22, which may drive and participate in inflammatory pathways involving epithelial cells as well as fibroblasts, (iv) the deficient or redirected function of T regulatory cells favoring fibrosis, and (v) the enhanced expression of CD19 and CD21 on naïve B cells, and the upregulation of co-stimulatory molecules in mature B cells, which together with the increased levels of B cell activating factor (BAFF) underlie the propensity to an exaggerated humoral response possibly favoring fibrogenesis. Despite all the progress made in understanding the features of the aberrant immune response in scleroderma, it remains unclear whether the activation of immune effector pathways ultimately drives the disease pathogenesis or rather represents a defective attempt to limit or even reverse excessive extracellular matrix deposition and progressive vasculopathy, the main hallmarks of this disease
    • …
    corecore