95 research outputs found
Human Streptococcus agalactiae Isolate in Nile Tilapia (Oreochromis niloticus)
Streptococcus agalactiae, the Lancefield group B streptococcus (GBS) long recognized as a mammalian pathogen, is an emerging concern with regard to fish. We show that a GBS serotype Ia multilocus sequence type ST-7 isolate from a clinical case of human neonatal meningitis caused disease and death in Nile tilapia (Oreochromis niloticus)
Serotype III Streptococcus agalactiae from Bovine Milk and Human Neonatal Infections1
Although largely unrelated, many bovine type III GBS appear to share a common ancestor with an important human clone
Germline Mutations in NFKB2 Implicate the Noncanonical NF-κB Pathway in the Pathogenesis of Common Variable Immunodeficiency
Common variable immunodeficiency (CVID) is a heterogeneous disorder characterized by antibody deficiency, poor humoral response to antigens, and recurrent infections. To investigate the molecular cause of CVID, we carried out exome sequence analysis of a family diagnosed with CVID and identified a heterozygous frameshift mutation, c.2564delA (p.Lys855Serfs∗7), in NFKB2 affecting the C terminus of NF-κB2 (also known as p100/p52 or p100/p49). Subsequent screening of NFKB2 in 33 unrelated CVID-affected individuals uncovered a second heterozygous nonsense mutation, c.2557C>T (p.Arg853∗), in one simplex case. Affected individuals in both families presented with an unusual combination of childhood-onset hypogammaglobulinemia with recurrent infections, autoimmune features, and adrenal insufficiency. NF-κB2 is the principal protein involved in the noncanonical NF-κB pathway, is evolutionarily conserved, and functions in peripheral lymphoid organ development, B cell development, and antibody production. In addition, Nfkb2 mouse models demonstrate a CVID-like phenotype with hypogammaglobulinemia and poor humoral response to antigens. Immunoblot analysis and immunofluorescence microscopy of transformed B cells from affected individuals show that the NFKB2 mutations affect phosphorylation and proteasomal processing of p100 and, ultimately, p52 nuclear translocation. These findings describe germline mutations in NFKB2 and establish the noncanonical NF-κB signaling pathway as a genetic etiology for this primary immunodeficiency syndrome
Long-term outcomes in patients with polyarticular juvenile idiopathic arthritis receiving adalimumab with or without methotrexate
Objectives Long-term safety and efficacy of adalimumab among patients with juvenile idiopathic arthritis (JIA) was evaluated through 6 years of treatment. Methods Children aged 4-17 years with polyarticular JIA were enrolled in a phase III, randomised-withdrawal, double-blind, placebo-controlled trial consisting of a 16-week open-label lead-in period, 32-week randomised double-blind period and 360-week long-term extension. Patients were stratified by baseline methotrexate use. Adverse events (AEs) were monitored, and efficacy assessments included JIA American College of Rheumatology (JIA ACR) 30%, 50%, 70% or 90% responses and the proportions of patients achieving 27-joint Juvenile Arthritis Disease Activity Score (JADAS27) low disease activity (LDA, = 6 continuous months) during the study. Attainment of JIA ACR 50 or higher and JADAS27 LDA or ID in the initial weeks were the best predictors of clinical remission. Mean JADAS27 decreased from baseline, 22.5 (n=170), to 2.5 (n=30) at week 312 (observed analysis). Conclusions Through 6 years of exposure, adalimumab was well tolerated with significant clinical response (up to clinical remission) and a relatively low retention rate
The proangiogenic capacity of polymorphonuclear neutrophils delineated by microarray technique and by measurement of neovascularization in wounded skin of CD18-deficient mice
Growing evidence supports the concept that polymorphonuclear neutrophils (PMN) are critically involved in inflammation-mediated angiogenesis which is important for wound healing and repair. We employed an oligonucleotide microarray technique to gain further insight into the molecular mechanisms underlying the proangiogenic potential of human PMN. In addition to 18 known angiogenesis-relevant genes, we detected the expression of 10 novel genes, namely midkine, erb-B2, ets-1, transforming growth factor receptor-beta(2) and -beta(3), thrombospondin, tissue inhibitor of metalloproteinase 2, ephrin A2, ephrin B2 and restin in human PMN freshly isolated from the circulation. Gene expression was confi rmed by the RT-PCR technique. In vivo evidence for the role of PMN in neovascularization was provided by studying neovascularization in a skin model of wound healing using CD18-deficient mice which lack PMN infi ltration to sites of lesion. In CD18-deficient animals, neo- vascularization was found to be signifi cantly compromised when compared with wild- type control animals which showed profound neovascularization within the granulation tissue during the wound healing process. Thus, PMN infiltration seems to facilitate inflammation mediated angiogenesis which may be a consequence of the broad spectrum of proangiogenic factors expressed by these cells. Copyright (c) 2006 S. Karger AG, Basel
Genetic architecture distinguishes systemic juvenile idiopathic arthritis from other forms of juvenile idiopathic arthritis: Clinical and therapeutic implications
Objectives Juvenile idiopathic arthritis (JIA) is a heterogeneous group of conditions unified by the presence of chronic childhood arthritis without an identifiable cause. Systemic JIA (sJIA) is a rare form of JIA characterised by systemic inflammation. sJIA is distinguished from other forms of JIA by unique clinical features and treatment responses that are similar to autoinflammatory diseases. However, approximately half of children with sJIA develop destructive, long-standing arthritis that appears similar to other forms of JIA. Using genomic approaches, we sought to gain novel insights into the pathophysiology of sJIA and its relationship with other forms of JIA. Methods We performed a genome-wide association study of 770 children with sJIA collected in nine countries by the International Childhood Arthritis Genetics Consortium. Single nucleotide polymorphisms were tested for association with sJIA. Weighted genetic risk scores were used to compare the genetic architecture of sJIA with other JIA subtypes. Results The major histocompatibility complex locus and a locus on chromosome 1 each showed association with sJIA exceeding the threshold for genome-wide significance, while 23 other novel loci were suggestive of association with sJIA. Using a combination of genetic and statistical approaches, we found no evidence of shared genetic architecture between sJIA and other common JIA subtypes. Conclusions The lack of shared genetic risk factors between sJIA and other JIA subtypes supports the hypothesis that sJIA is a unique disease process and argues for a different classification framework. Research to improve sJIA therapy should target its unique genetics and specific pathophysiological pathways
Elevated serum levels of soluble CD154 in children with juvenile idiopathic arthritis
<p>Abstract</p> <p>Objective</p> <p>Cytokines play important roles in mediating inflammation in autoimmunity. Several cytokines are elevated in serum and synovial fluid samples from children with Juvenile Idiopathic Arthritis (JIA). Soluble CD154 (sCD154) is elevated in other autoimmune disorders, but has not been characterized in JIA. Our objectives were to determine if sCD154 is elevated in JIA, and to examine correlations between sCD154 and other inflammatory cytokines.</p> <p>Methods</p> <p>Serum from 77 children with JIA and 81 pediatric controls was analyzed for interleukin (IL)1β, IL2, IL4, IL5, IL6, IL8, IL10, IL12, IL13, sCD154, interferon-γ (IFNγ), soluble IL2 receptor (sIL2R), and tumor necrosis factor-α (TNFα), using the Luminex Multi-Analyte Profiling system. Differences in levels of cytokines between cases and controls were analyzed. Logistic regression was also performed.</p> <p>Results</p> <p>sCD154 was significantly elevated in cases compared to controls (p < 0.0001). IL1β, IL5, IL6, IL8, IL13, IFNγ, sIL2R, and TNFα were also significantly elevated in JIA. Levels of sCD154 were highly correlated with IL1β, IL6, IL8, and TNFα (p < 0.0001). Logistic regression analysis suggested that IL6 (odds ratio (OR): 1.4, p < 0.0001), sCD154 (OR: 1.1, p < 0.0001), and TNFα (OR: 1.1, p < 0.005) were positively associated with JIA, while IL10 (OR: 0.5, p < 0.002) was protective. sCD154 was elevated in all JIA subtypes, with highest levels among more severe subtypes. IL1β, IL6, IL8, sIL2R and TNFα were also elevated in several JIA subtypes.</p> <p>Conclusion</p> <p>Serum levels of sCD154, IL1β, IL6, IL8, sIL2R and TNFα are elevated in most JIA subtypes, suggesting a major role for sCD154, and these cytokines and cytokine receptors in the pathogenesis of JIA.</p
- …