58 research outputs found

    On the relation of stress and deformation fields to natural and induced seismicity

    Get PDF
    thesi

    Frequency‐Dependent Moment Tensors of Induced Microearthquakes

    Get PDF
    Analysis of 984 induced microearthquakes from The Geysers geothermal reservoir in California reveals that the retrieved moment tensors depend on the frequency band of the inverted waveforms. The observed dependence is more significant for the percentages of the double‐couple, compensated linear vector dipole, and isotropic (ISO) components than for the focal mechanisms. The average root‐mean‐square of the moment tensors obtained in different frequency bands is correlated with spectra of ambient noise. The percentages of double‐couple and ISO components tend to decrease and increase with the upper cutoff frequency (fu), respectively. This suggests that shear rupture radiates energy preferentially in a lower frequency band and tensile rupture in a higher frequency band. Events displaying a strong increase of the ISO with fu are confined within the same depth interval as the injection points. This might be related to the strong thermoelastic effects in the vicinity of injection points that promote opening of small cracks adjacent to the main fractures

    Experimental Investigation on Static and Dynamic Bulk Moduli of Dry and Fluid-Saturated Porous Sandstones

    Get PDF
    Knowledge of pressure-dependent static and dynamic moduli of porous reservoir rocks is of key importance for evaluating geological setting of a reservoir in geo-energy applications. We examined experimentally the evolution of static and dynamic bulk moduli for porous Bentheim sandstone with increasing confining pressure up to about 190 MPa under dry and water-saturated conditions. The static bulk moduli (K-s) were estimated from stress-volumetric strain curves while dynamic bulk moduli (K-d) were derived from the changes in ultrasonic P- and S- wave velocities (similar to 1 MHz) along different traces, which were monitored simultaneously during the entire deformation. In conjunction with published data of other porous sandstones (Berea, Navajo and Weber sandstones), our results reveal that the ratio between dynamic and static bulk moduli (K-d/K-s) reduces rapidly from about 1.5 - 2.0 at ambient pressure to about 1.1 at high pressure under dry conditions and from about 2.0 - 4.0 to about 1.5 under water-saturated conditions, respectively. We interpret such a pressure-dependent reduction by closure of narrow (compliant) cracks, highlighting thatK(d)/K(s)is positively correlated with the amount of narrow cracks. Above the crack closure pressure, where equant (stiff) pores dominate the void space,K-d/K(s)is almost constant. The enhanced difference between dynamic and static bulk moduli under water saturation compared to dry conditions is possibly caused by high pore pressure that is locally maintained if measured using high-frequency ultrasonic wave velocities. In our experiments, the pressure dependence of dynamic bulk modulus of water-saturated Bentheim sandstone at effective pressures above 5 MPa can be roughly predicted by both the effective medium theory (Mori-Tanaka scheme) and the squirt-flow model. Static bulk moduli are found to be more sensitive to narrow cracks than dynamic bulk moduli for porous sandstones under dry and water-saturated conditions

    Analysis of microseismicity framing ML > 2.5 earthquakes at The Geysers geothermal field, California

    Get PDF
    Preparatory mechanisms accompanying or leading to nucleation of larger earthquakes have been observed at both laboratory and field scales, but conditions favoring the occurrence of observable preparatory processes are still largely unknown. In particular, it remains a matter of debate why some earthquakes occur spontaneously without noticeable precursors as opposed to events that are preceded by an extended failure process. In this study, we have generated new high‐resolution seismicity catalogs framing the occurrence of 20 ML > 2.5 earthquakes at The Geysers geothermal field in California. To this end, a seismicity catalog of the 11 days framing each large event was created. We selected 20 sequences sampling different hypocentral depths and hydraulic conditions within the field. Seismic activity and magnitude frequency distributions displayed by the different earthquake sequences are correlated with their location within the reservoir. Sequences located in the northwestern part of the reservoir show overall increased seismic activity and low b values, while the southeastern part is dominated by decreased seismic activity and higher b values. Periods of high injection coincide with high b values and vice versa. These observations potentially reflect varying differential and mean stresses and damage of the reservoir rocks across the field. About 50% of analyzed sequences exhibit no change in seismicity rate in response to the large main event. However, we find complex waveforms at the onset of the main earthquake, suggesting that small ruptures spontaneously grow into or trigger larger events

    Injection-induced fault slip and associated seismicity in the lab: Insights from source mechanisms, local stress states and fault geometry

    Get PDF
    Probing source mechanisms of natural and induced earthquakes is a powerful tool to unveil associated rupture kinematics. The source processes of failure and slip instability driven by stress loading are affected by fault geometry, but the source ruptures of injection-induced seismicity in relation to fault structures and local stress states remain poorly understood. We have conducted a series of fault reactivation and slip experiments on sandstone samples containing faults with different surface roughness (smooth saw-cut fault and fractured rough fault). We impose progressive fluid injection to induce fault slip, and simultaneously monitor the associated acoustic emission (AE) activity. Using high-resolution AE recordings, we perform full moment tensor inversion of all located AE sources, and investigate the changes of AE source characteristics associated with induced fault slip and their relation to fault roughness. For the complex and rough fault, we observe significant non-double-couple components of AE sources and a high degree of focal mechanism heterogeneity. The temporal changes of AE mechanisms associated with injection-induced fault slip on the smooth fault reveal increasing proportions of double-couple components and decreasing variability of AE focal mechanisms when approaching the onset of slip events. The observed inconsistency between the nodal planes of AE sources and the macroscopic fault plane orientation is attributed to the development of secondary fracture networks surrounding the principal slip surface. We analyze changes in the magnitude-frequency characteristics and source mechanisms of AEs with fault-normal distance, showing that for the smooth (mature) fault, Gutenberg–Richter b-value of on-fault seismicity is lower and focal mechanisms are less heterogeneous, compared to off-fault seismicity. Our results emphasize the important role of roughness-related changes in local fault geometry and associated stress heterogeneity for source mechanisms and rupture kinematics of injection-induced seismicity

    Variation of Fault Creep Along the Overdue Istanbul-Marmara Seismic Gap in NW Türkiye

    Get PDF
    Strain energy from tectonic loading can be partly released through aseismic creep. Earthquake repeaters, repeatedly activated brittle fault patches surrounded by creep, indicate steady-state creep that affects the amount of seismic energy available for the next large earthquake along a plate contact. The offshore Main Marmara Fault (MMF) of the North Anatolian Fault Zone represents a seismic gap capable of generating a M > 7 earthquake in direct vicinity to the mega-city Istanbul. Based on a newly compiled seismicity catalog, we identify repeating earthquakes to resolve the spatial creep variability along the MMF during a 15-year period. We observe a maximum of seismic repeaters indicating creep along the central and western MMF segments tapering off toward the locked onshore Ganos fault in the west, and the locked offshore Princes Islands segment immediately south of Istanbul in the east. This indicates a high degree of spatial creep variability along the Istanbul-Marmara seismic gap

    Metre-scale damage zone characterization using S-coda waves from active ultrasonic transmission measurements in the STIMTEC project, URL Reiche Zeche, Germany

    Get PDF
    Studies of controlled hydraulic stimulation experiments with active and passive seismic monitoring conducted in Underground Research Laboratories (URLs) benefit from specific knowledge of hydraulic parameters, close by microseismic monitoring revealing structural details of the rock mass, and detailed evolution of seismicity in response to injection operations. Microseismic monitoring is commonly used to characterize a stimulated reservoir volume, for example, in terms of damage evolution of the rock mass. Since seismic attenuation is affected by damage of the rock volume, active seismic sources covering sizes from the centimetre to decimetre scale may help us to investigate space–time varying attenuation properties in a reservoir. This may allow us to monitor damage evolution of the stimulated rock volume in more detail, also since active seismic sources produce stronger signals leading to a broader frequency range that can be analysed compared to passive seismic signals. Within the STIMTEC project in the URL Reiche Zeche (URL-RZ) in Freiberg (Germany), more than 300 active Ultrasonic Transmission (UT) measurements were performed before and after hydraulic stimulations in two boreholes in the targeted rock volume, an anisotropic metamorphic gneiss. The signal-frequency content ranges between 1 and 60 kHz. Assuming scattering attenuation to dominate over intrinsic attenuation, we here apply the single isotropic scattering model. S-coda waves of 88 spatially representative UT measurements are used to estimate the coda quality factor (QC). We obtain stable QC estimates for centre frequencies of octave-width frequency bands between 3 and 21 kHz. We group neighbouring UT measurements to stabilize the observations and form eight UT groups in total, covering different depth intervals in three boreholes and four different time periods to investigate scattering attenuation changes in a spatiotemporal manner. Our final mean QC (⁠QC¯¯¯¯¯¯¯⁠) estimates show characteristic frequency-dependence as observed at the field scale in geological reservoirs. We find temporal variations of QC are strongly connected to hydraulic stimulation, and these variations are more significant than those resolved from velocity changes. QC¯¯¯¯¯¯¯ estimates at frequencies above 15 kHz indicate healing of injection-induced small-scale fractures during a two-months post-stimulation phase. Larger fractures, mostly sampled by lower frequencies (<15 kHz), seem to be more persistent with time (over 15 months). We observe spatial differences of QC¯¯¯¯¯¯¯ values near the mine galleries (driftway and vein drift) and relate these observations to different extents and characteristics of the galleries’ excavation damage zones. Our results further support previous assumptions based on borehole televiewer logs and mapped structures of an existing fault with larger damage zone that crosses the stimulated rock volume NW-SE between the galleries. We conclude that the coda analysis of active UT measurements complements established imaging methods used during experiments in URLs. In particular, coda analysis is a powerful tool for the detection of damage zones and for monitoring local fracture networks with immediate application for imaging georeservoirs considered for exploitation or underground storage of gases and liquids

    Sea Level Changes Affect Seismicity Rates in a Hydrothermal System Near Istanbul

    Get PDF
    Small stress changes such as those from sea level fluctuations can be large enough to trigger earthquakes. If small and large earthquakes initiate similarly, high-resolution catalogs with low detection thresholds are best suited to illuminate such processes. Below the Sea of Marmara section of the North Anatolian Fault, a segment of urn:x-wiley:00948276:media:grl65397:grl65397-math-0001150 km is late in its seismic cycle. We generated high-resolution seismicity catalogs for a hydrothermal region in the eastern Sea of Marmara employing AI-based and template matching techniques to investigate the link between sea level fluctuations and seismicity over 6 months. All high resolution catalogs show that local seismicity rates are larger during time periods shortly after local minima of sea level, when it is already rising. Local strainmeters indicate that seismicity is promoted when the ratio of differential to areal strain is the largest. The strain changes from sea level variations, on the order of 30–300 nstrain, are sufficient to promote seismicity

    Stress drop-magnitude dependence of acoustic emissions during laboratory stick-slip

    Get PDF
    Earthquake source parameters such as seismic stress drop and corner frequency are observed to vary widely, leading to persistent discussion on potential scaling of stress drop and event size. Physical mechanisms that govern stress drop variations arc difficult to evaluate in nature and are more readily studied in controlled laboratory experiments. We perform two stick-slip experiments on fractured (rough) and cut (smooth) Westerly granite samples to explore fault roughness effects on acoustic emission (AE) source parameters. We separate large stick-slip events that generally saturate the seismic recording system from populations of smaller AE events which are sensitive to fault stresses prior to slip. AE event populations show many similarities to natural seismicity and may be interpreted as laboratory equivalent of natural microseismic events. We then compare the temporal evolution of mechanical data such as measured stress release during slip to temporal changes in stress drops derived from Alis using the spectral ratio technique. We report on two primary observations: (1) In contrast to most case studies for natural earthquakes, we observe a strong increase in seismic stress drop with AE size. (2) The scaling of stress drop with magnitude is governed by fault roughness, whereby the rough fault shows a more rapid increase of the stress drop magnitude relation with progressing large stick-slip events than the smooth fault. The overall range of AE sizes on the rough surface is influenced by both the average grain size and the width of the fault core. The magnitudes of the smallest AE events on smooth faults may also be governed by grain size. However, AEs significantly grow beyond peak roughness and the width of the fault core. Our laboratory tests highlight that source parameters vary substantially in the presence of fault zone heterogeneity (i.e. roughness and narrow grain size distribution), which may affect seismic energy partitioning and static stress drops of small and large AE events
    corecore