3,328 research outputs found
A Simple Quantum Model of Ultracold Polar Molecule Collisions
We present a unified formalism for describing chemical reaction rates of
trapped, ultracold molecules. This formalism reduces the scattering to its
essential features, namely, a propagation of the reactant molecules through a
gauntlet of long-range forces before they ultimately encounter one another,
followed by a probability for the reaction to occur once they do. In this way,
the electric-field dependence should be readily parametrized in terms of a pair
of fitting parameters (along with a coefficient) for each asymptotic
value of partial wave quantum numbers . From this, the electric
field dependence of the collision rates follows automatically. We present
examples for reactive species such as KRb, and non-reactive species, such as
RbCs
Investigation of the aerodynamic characteristics and wing-deployment transients of the NASA DL-4 body with a sailwing landing aid Final report
Aerodynamic characteristics and wing deployment transients of NASA DL-4 lifting body fitted with sailwing landing ai
An aircraft noise study in Norway
An extensive study of aircraft noise is currently being conducted in Oslo, Norway. The traffic at Oslo Airport Fornebu that includes both national and international flights, totals approximately 350 movements per day: 250 of these are regular scheduled flights with intermediate and large size aircraft, the bulk being DC9 and Boeing 737. The total traffic during the summer of 1989 was expected to resemble the maximum level to which the regular traffic will increase before the new airport can be put into operation. The situation therefore represented a possibility to study the noise impact on the communities around Fornebu. A comprehensive social survey was designed, including questions on both aircraft and road traffic noise. A random sample of 1650 respondents in 15 study areas were contacted for an interview. These areas represent different noise levels and different locations relative to the flight paths. The interviews were conducted in a 2 week period just prior to the transfer of charter traffic from Gardemoen to Fornebu. In the same period the aircraft noise was monitored in all 15 areas. In addition the airport is equipped with a permanent flight track and noise monitoring system. The noise situation both in the study period and on an average basis can therefore be accurately described. In August a group of 1800 new respondents were subjected to identical interviews in the same 15 areas, and the noise measurement program was repeated. Results of the study are discussed
ASSESSING THE RISKS OF A FUTURE RAPID LARGE SEA LEVEL RISE: A REVIEW
Our aim is to make an appropriate characterization and interpretation of the risk problem of rapid large sea level rise that reflects the very large uncertainty in present day knowledge concerning this possibility, and that will be useful in informing discussion about risk management approaches. We consider mainly the potential collapse of the West Antarctic ice sheet as the source of such a sea level rise. Our review, characterization and interpretation of the risk makes us conclude that the risk of a rapid large sea level rise is characterized by potentially catastrophic consequences and high epistemic uncertainty; effective risk management must involve highly adaptive management regimes, vulnerability reduction, and prompt development of capabilities for precautionary reduction of climate change forcings.sea level rise, West Antarctic ice sheet, climate change, adaptive management, epistemic uncertainty, risk management arenas, vulnerability
p-wave Feshbach molecules
We have produced and detected molecules using a p-wave Feshbach resonance
between 40K atoms. We have measured the binding energy and lifetime for these
molecules and we find that the binding energy scales approximately linearly
with magnetic field near the resonance. The lifetime of bound p-wave molecules
is measured to be 1.0 +/- 0.1 ms and 2.3 +/- 0.2 ms for the m_l = +/- 1 and m_l
= 0 angular momentum projections, respectively. At magnetic fields above the
resonance, we detect quasi-bound molecules whose lifetime is set by the
tunneling rate through the centrifugal barrier
Mol. Cell. Proteomics
Chemical cross-linking in combination with mass spectrometric analysis offers the potential to obtain low-resolution structural information from proteins and protein complexes. Identification of peptides connected by a cross-link provides direct evidence for the physical interaction of amino acid side chains, information that can be used for computational modeling purposes. Despite impressive advances that were made in recent years, the number of experimentally observed cross-links still falls below the number of possible contacts of cross-linkable side chains within the span of the cross-linker. Here, we propose two complementary experimental strategies to expand cross-linking data sets. First, enrichment of cross-linked peptides by size exclusion chromatography selects cross-linked peptides based on their higher molecular mass, thereby depleting the majority of unmodified peptides present in proteolytic digests of cross-linked samples. Second, we demonstrate that the use of proteases in addition to trypsin, such as Asp-N, can additionally boost the number of observable cross-linking sites. The benefits of both SEC enrichment and multiprotease digests are demonstrated on a set of model proteins and the improved workflow is applied to the characterization of the 20S proteasome from rabbit and Schizosaccharomyces pombe
Methane emissions from western Siberian wetlands: heterogeneity and sensitivity to climate change
The prediction of methane emissions from high-latitude wetlands is important given concerns about their sensitivity to a warming climate. As a basis for the prediction of wetland methane emissions at regional scales, we coupled the variable infiltration capacity macroscale hydrological model (VIC) with the biosphere–energy-transfer–hydrology terrestrial ecosystem model (BETHY) and a wetland methane emissions model to make large-scale estimates of methane emissions as a function of soil temperature, water table depth, and net primary productivity (NPP), with a parameterization of the sub-grid heterogeneity of the water table depth based on TOPMODEL. We simulated the methane emissions from a 100 km × 100 km region of western Siberia surrounding the Bakchar Bog, for a retrospective baseline period of 1980–1999 and have evaluated their sensitivity to increases in temperature of 0–5 °C and increases in precipitation of 0–15%. The interactions of temperature and precipitation, through their effects on the water table depth, played an important role in determining methane emissions from these wetlands. The balance between these effects varied spatially, and their net effect depended in part on sub-grid topographic heterogeneity. Higher temperatures alone increased methane production in saturated areas, but caused those saturated areas to shrink in extent, resulting in a net reduction in methane emissions. Higher precipitation alone raised water tables and expanded the saturated area, resulting in a net increase in methane emissions. Combining a temperature increase of 3 °C and an increase of 10% in precipitation to represent climate conditions that may pertain in western Siberia at the end of this century resulted in roughly a doubling in annual emissions
Total angular momentum representation for atom-molecule collisions in electric fields
It is shown that the atom-molecule collision problem in the presence of an
external electric field can be solved using the total angular momentum
representation in the body-fixed coordinated frame, leading to a
computationally efficient method for ab initio modeling of low-temperature
scattering phenomena. Our calculations demonstrate rapid convergence of the
cross sections for vibrational and Stark relaxation in He-CaD collisions with
the number of total angular momentum states in the basis set, leading to a
5-100 fold increase in computational efficiency over the previously used
methods based on the fully uncoupled space-fixed representation. These results
open up the possibility of carrying out numerically converged quantum
scattering calculations on a wide array of atom-molecule collisions and
chemical reactions in the presence of electric fields.Comment: 19 pages, 3 figures, 1 tabl
A Dielectric Superfluid of Polar Molecules
We show that, under achievable experimental conditions, a Bose-Einstein
condensate (BEC) of polar molecules can exhibit dielectric character. In
particular, we derive a set of self-consistent mean-field equations that couple
the condensate density to its electric dipole field, leading to the emergence
of polarization modes that are coupled to the rich quasiparticle spectrum of
the condensate. While the usual roton instability is suppressed in this system,
the coupling can give rise to a phonon-like instability that is characteristic
of a dielectric material with a negative static dielectric function.Comment: Version published in New Journal of Physics, 11+ pages, 4 figure
- …