It is shown that the atom-molecule collision problem in the presence of an
external electric field can be solved using the total angular momentum
representation in the body-fixed coordinated frame, leading to a
computationally efficient method for ab initio modeling of low-temperature
scattering phenomena. Our calculations demonstrate rapid convergence of the
cross sections for vibrational and Stark relaxation in He-CaD collisions with
the number of total angular momentum states in the basis set, leading to a
5-100 fold increase in computational efficiency over the previously used
methods based on the fully uncoupled space-fixed representation. These results
open up the possibility of carrying out numerically converged quantum
scattering calculations on a wide array of atom-molecule collisions and
chemical reactions in the presence of electric fields.Comment: 19 pages, 3 figures, 1 tabl