588 research outputs found

    Investigation of an integrated regional environmental watershed methodology

    Get PDF
    Recent public awareness of the environment has placed increased emphasis on the health and current state of the regional watershed. The watershed has been defined as that area in which water flowing across and beneath a given land surface drains into a specific stream or river, ultimately flowing through a single point or outlet on that stream or river. Since the processes involved are many and are analyzed in the literature on an individual basis, the current investigation attempts a more holistic approach by suggesting a methodology that integrates all elements of the hydrologic cycle. The investigation utilizes the area topography in the form of a digital elevation model (DEM) as the base for analysis. Basic to any watershed model is a characterization of the water flow in streams by a mathematical function expressed through the hydrograph. The investigation explores the hydrograph and proposes that it can be constructed from hydrological components in a feedback concept with precipitation as input and the volume of flow as output. Feedback, for example, is represented as ground water and infiltration. An approach is presented to develop the watershed hydrograph from a Taylor series expansion using the derivatives of measured flow as parameters. The expansion result is transformed through LaPlace techniques into a representation of the hydrograph. Once done, the resulting time function can be transformed by the Fourier operator and a unique spectral signature of the stream obtained. It is further asserted that the national network of stream gages can be a useful source of data for this construct. Included in the research is an investigation of the framework needed to package the information describing the watershed model. The Geographic Information System (GIS) is suggested as the ideal method to organize and provide clarity to the watershed model. Particularly important is the structured relational database required in this approach. Added to this are spatial geographic capabilities, which did not exist in the past. Lastly, an investigation into the project management tasks necessary for the successful pursuit of a watershed-monitoring program is outlined. Emphasis here is placed on the inclusion of all the interested parties in the care taking of the watershed. The analysis and modeling of watersheds are gaining increasing attention as managers and custodians become more acutely aware of the interactions of human activity and the environmental health of the watershed. Government investment in the streamgaging networks will contribute to this process by providing improved physical data to be used as input into the modeling efforts. The future holds greater promise to manage our natural resources through more comprehensive models of the environment

    tDCS over the left prefrontal cortex enhances cognitive control for positive affective stimuli

    Get PDF
    Transcranial Direct Current Stimulation (tDCS) is a neuromodulation technique with promising results for enhancing cognitive information processes. So far, however, research has mainly focused on the effects of tDCS on cognitive control operations for non-emotional material. Therefore, our aim was to investigate the effects on cognitive control considering negative versus positive material. For this sham-controlled, within-subjects study, we selected a homogeneous sample of twenty-five healthy participants. By using behavioral measures and event related potentials (ERP) as indexes, we aimed to investigate whether a single session of anodal tDCS of the left dorsolateral prefrontal cortex (DLPFC) would have specific effects in enhancing cognitive control for positive and negative valenced stimuli. After tDCS over the left DLPFC (and not sham control stimulation), we observed more negative N450 amplitudes along with faster reaction times when inhibiting a habitual response to happy compared to sad facial expressions. Gender did not influence the effects of tDCS on cognitive control for emotional information. In line with the Valence Theory of side-lateralized activity, this stimulation protocol might have led to a left dominant (relative to right) prefrontal cortical activity, resulting in augmented cognitive control specifically for positive relative to negative stimuli. To verify that tDCS induces effects that are in line with all aspects of the well known Valence Theory, future research should investigate the effects of tDCS over the left vs. right DLPFC on cognitive control for emotional information

    Generation of optical frequency combs in fibres

    Get PDF
    We numerically investigated the possibility of generating high-quality ultra-short optical pulses with broad frequencycombs spectra in a system consisting of three optical fibres. In this system, the first fibre is a conventional single-mode fibre, the second one is erbium-doped, and the last one is a low-dispersion fibre. The system is pumped with a modulated sine-wave generated by two equally intense lasers with the wavelengths λ ;1and λ2 such that their central wavelength is at λc = (λ1 + λ2)/2 = 1531 nm. The modelling was performed using the generalised nonlinear Schrödinger equation which includes the Kerr and Raman effects, as well as the higher-order dispersion and gain. We took a close look at the pulse evolution in the first two stages and studied the pulse behaviour depending on the group-velocity dispersion and the nonlinear parameter of first fibre, as well as the initial laser frequency separation. For these parameters, the optimum lengths of fibre 1 and 2 were found that provide low-noise pulses. To characterise the pulse energy content, we introduced a figure of merit that was dependent on the group-velocity dispersion, the nonlinearity of fibre 1, and the laser separation

    Quantification of mutant huntingtin protein in cerebrospinal fluid from Huntington's disease patients.

    Get PDF
    Quantification of disease-associated proteins in the cerebrospinal fluid (CSF) has been critical for the study and treatment of several neurodegenerative disorders; however, mutant huntingtin protein (mHTT), the cause of Huntington's disease (HD), is at very low levels in CSF and, to our knowledge, has never been measured previously

    The critical dimension for a 4th order problem with singular nonlinearity

    Full text link
    We study the regularity of the extremal solution of the semilinear biharmonic equation \bi u=\f{\lambda}{(1-u)^2}, which models a simple Micro-Electromechanical System (MEMS) device on a ball B\subset\IR^N, under Dirichlet boundary conditions u=νu=0u=\partial_\nu u=0 on B\partial B. We complete here the results of F.H. Lin and Y.S. Yang \cite{LY} regarding the identification of a "pull-in voltage" \la^*>0 such that a stable classical solution u_\la with 0 exists for \la\in (0,\la^*), while there is none of any kind when \la>\la^*. Our main result asserts that the extremal solution uλu_{\lambda^*} is regular (supBuλ<1)(\sup_B u_{\lambda^*} <1) provided N8 N \le 8 while uλu_{\lambda^*} is singular (supBuλ=1\sup_B u_{\lambda^*} =1) for N9N \ge 9, in which case 1C0x4/3uλ(x)1x4/31-C_0|x|^{4/3}\leq u_{\lambda^*} (x) \leq 1-|x|^{4/3} on the unit ball, where C0:=(λλ)1/3 C_0:= (\frac{\lambda^*}{\overline{\lambda}})^{1/3} and λˉ:=8/9(N2/3)(N8/3) \bar{\lambda}:= {8/9} (N-{2/3}) (N- {8/3}).Comment: 19 pages. This paper completes and replaces a paper (with a similar title) which appeared in arXiv:0810.5380. Updated versions --if any-- of this author's papers can be downloaded at this http://www.birs.ca/~nassif
    corecore