4,594 research outputs found

    Super-Extremal Spinning Black Holes via Accretion

    Full text link
    A Kerr black hole with mass MM and angular momentum JJ satisfies the extremality inequality ∣J∣≤M2|J| \le M^2. In the presence of matter and/or gravitational radiation, this bound needs to be reformulated in terms of local measurements of the mass and the angular momentum directly associated with the black hole. The isolated and dynamical horizon framework provides such quasi-local characterization of black hole mass and angular momentum. With this framework, it is possible in axisymmetry to reformulate the extremality limit as ∣J∣≤2 MH2|J| \le 2\,M_H^2, with MHM_H the irreducible mass of the black hole computed from its apparent horizon area and JJ obtained using approximate rotational Killing vectors on the apparent horizon. The ∣J∣≤2 MH2|J| \le 2\,M_H^2 condition is also equivalent to requiring a non-negative black hole surface gravity. We present numerical experiments of an accreting black hole that temporarily violates this extremality inequality. The initial configuration consists of a single, rotating black hole surrounded by a thick, shell cloud of negative energy density. For these numerical experiments, we introduce a new matter-without-matter evolution method.Comment: 11 pages, 10 figure

    Robustness of Binary Black Hole Mergers in the Presence of Spurious Radiation

    Full text link
    We present an investigation into how sensitive the last orbits and merger of binary black hole systems are to the presence of spurious radiation in the initial data. Our numerical experiments consist of a binary black hole system starting the last couple of orbits before merger with additional spurious radiation centered at the origin and fixed initial angular momentum. As the energy in the added spurious radiation increases, the binary is invariably hardened for the cases we tested, i.e. the merger of the two black holes is hastened. The change in merger time becomes significant when the additional energy provided by the spurious radiation increases the Arnowitt-Deser-Misner (ADM) mass of the spacetime by about 1%. While the final masses of the black holes increase due to partial absorption of the radiation, the final spins remain constant to within our numerical accuracy. We conjecture that the spurious radiation is primarily increasing the eccentricity of the orbit and secondarily increasing the mass of the black holes while propagating out to infinity.Comment: 12 pages, 12 figure

    A virtual experiment on pedestrian destination choice:the role of schedules, the environment and behavioural categories

    Get PDF
    Which locations pedestrians decide to visit and in what order drives circulation patterns in pedestrian infrastructure. Destination choice is understood to arise from individuals trading off different factors, such as the proximity and busyness of destinations. Here, a virtual experiment is used to investigate whether this behaviour depends on the layout of buildings, whether planned or imposed destination schedules influence decisions and whether it is possible to distinguish different choice behaviour strategies in pedestrian populations. Findings suggest that virtual experiments can consistently elicit a range of destination choice behaviours indicating the flexibility of this experimental paradigm. The experimental approach facilitates changing the environment layout while controlling for other factors and illustrates this in itself can be important in determining destination choice. Destination schedules are found to be relevant both when imposed or generated by individuals, but adherence to them varies across individuals and depends on prevailing environmental conditions, such as destination busyness. Different destination choice behaviour strategies can be identified, but their properties are sensitive to the detection methods used, and it is suggested such behaviour classification should be informed by specific use-cases. It is suggested that these contributions present useful starting points for future research into pedestrian destination choice

    Kramers-Kronig, Bode, and the meaning of zero

    Full text link
    The implications of causality, as captured by the Kramers-Kronig relations between the real and imaginary parts of a linear response function, are familiar parts of the physics curriculum. In 1937, Bode derived a similar relation between the magnitude (response gain) and phase. Although the Kramers-Kronig relations are an equality, Bode's relation is effectively an inequality. This perhaps-surprising difference is explained using elementary examples and ultimately traces back to delays in the flow of information within the system formed by the physical object and measurement apparatus.Comment: 8 pages; American Journal of Physics, to appea

    A Spitzer Survey of Novae in M31

    Full text link
    We report the results of the first infrared survey of novae in the nearby spiral galaxy, M31. Both photometric and spectroscopic observations of a sample of 10 novae (M31N 2006-09c, 2006-10a, 2006-10b, 2006-11a, 2007-07f, 2007-08a, 2007-08d, 2007-10a, 2007-11d, and 2007-11e) were obtained with the Spitzer Space Telescope. Eight of the novae were observed with the IRAC (all but M31N 2007-11d and 2007-11e) and eight with the IRS (all but 2007-07f and 2007-08a), resulting in six in common between the two instruments. The observations, which were obtained between ~3 and ~7 months after discovery, revealed evidence for dust formation in two of the novae: M31N 2006-10a and (possibly) 2007-07f, and [Ne II] 12.8 micron line emission in a third (2007-11e). The Spitzer observations were supplemented with ground-based optical photometric and spectroscopic data that were used to determine the speed classes and spectroscopic types of the novae in our survey. After including data for dust-forming Galactic novae, we show that dust formation timescales are correlated with nova speed class in that dust typically forms earlier in faster novae. We conclude that our failure to detect the signature of dust formation in most of our M31 sample is likely a result of the relatively long delay between nova eruption and our Spitzer observations. Indeed, the two novae for which we found evidence of dust formation were the two "slowest" novae in our sample. Finally, as expected, we found that the majority of the novae in our sample belong to the Fe II spectroscopic class, with only one clear example of the He/N class (M31N 2006-10b). Typical of an He/N system, M31N 2006-10b was the fastest nova in our sample, not detected with the IRS, and just barely detected in three of the IRAC bands when it was observed ~4 months after eruption.Comment: 37 pages, 12 figures, accepted for publication in the Astrophysical Journa

    A remarkable recurrent nova in M 31: The predicted 2014 outburst in X-rays with Swift

    Get PDF
    The M 31 nova M31N 2008-12a was recently found to be a recurrent nova (RN) with a recurrence time of about 1 year. This is by far the fastest recurrence time scale of any known RNe. Our optical monitoring programme detected the predicted 2014 outburst of M31N 2008-12a in early October. We immediately initiated an X-ray/UV monitoring campaign with Swift to study the multiwavelength evolution of the outburst. We monitored M31N 2008-12a with daily Swift observations for 20 days after discovery, covering the entire supersoft X-ray source (SSS) phase. We detected SSS emission around day six after outburst. The SSS state lasted for approximately two weeks until about day 19. M31N 2008-12a was a bright X-ray source with a high blackbody temperature. The X-ray properties of this outburst were very similar to the 2013 eruption. Combined X-ray spectra show a fast rise and decline of the effective blackbody temperature. The short-term X-ray light curve showed strong, aperiodic variability which decreased significantly after about day 14. Overall, the X-ray properties of M31N 2008-12a are consistent with the average population properties of M 31 novae. The optical and X-ray light curves can be scaled uniformly to show similar time scales as those of the Galactic RNe U Sco or RS Oph. The SSS evolution time scales and effective temperatures are consistent with a high-mass WD. We predict the next outburst of M31N 2008-12a to occur in autumn 2015.Comment: 13 pages, 7 figures, 3 tables; accepted for publication in A&
    • …
    corecore