
                          King, C. J., Koltsova, O., & Bode, N. W. F. (2022). Simulating the
effect of measurement errors on pedestrian destination choice model
calibration. Transportmetrica A: Transport Science.
https://doi.org/10.1080/23249935.2021.2017510

Publisher's PDF, also known as Version of record
License (if available):
CC BY
Link to published version (if available):
10.1080/23249935.2021.2017510

Link to publication record in Explore Bristol Research
PDF-document

This is the final published version of the article (version of record). It first appeared online via Taylor and Francis
at https://doi.org/10.1080/23249935.2021.2017510 .Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the
published version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/

https://doi.org/10.1080/23249935.2021.2017510
https://doi.org/10.1080/23249935.2021.2017510
https://research-information.bris.ac.uk/en/publications/ef209733-239f-419b-99d4-9735d2459dcc
https://research-information.bris.ac.uk/en/publications/ef209733-239f-419b-99d4-9735d2459dcc


Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=ttra21

Transportmetrica A: Transport Science

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/ttra21

Simulating the effect of measurement errors on
pedestrian destination choice model calibration

Christopher King, Oksana Koltsova & N. W. F. Bode

To cite this article: Christopher King, Oksana Koltsova & N. W. F. Bode (2022): Simulating the
effect of measurement errors on pedestrian destination choice model calibration, Transportmetrica
A: Transport Science, DOI: 10.1080/23249935.2021.2017510

To link to this article:  https://doi.org/10.1080/23249935.2021.2017510

© 2022 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group

View supplementary material 

Published online: 08 Mar 2022.

Submit your article to this journal 

Article views: 254

View related articles 

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=ttra21
https://www.tandfonline.com/loi/ttra21
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/23249935.2021.2017510
https://doi.org/10.1080/23249935.2021.2017510
https://www.tandfonline.com/doi/suppl/10.1080/23249935.2021.2017510
https://www.tandfonline.com/doi/suppl/10.1080/23249935.2021.2017510
https://www.tandfonline.com/action/authorSubmission?journalCode=ttra21&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=ttra21&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/23249935.2021.2017510
https://www.tandfonline.com/doi/mlt/10.1080/23249935.2021.2017510
http://crossmark.crossref.org/dialog/?doi=10.1080/23249935.2021.2017510&domain=pdf&date_stamp=2022-03-08
http://crossmark.crossref.org/dialog/?doi=10.1080/23249935.2021.2017510&domain=pdf&date_stamp=2022-03-08


TRANSPORTMETRICA A: TRANSPORT SCIENCE
https://doi.org/10.1080/23249935.2021.2017510

Simulating the effect of measurement errors on pedestrian
destination choice model calibration

Christopher King a, Oksana Koltsovab and N. W. F. Bode a

aDepartment of Engineering Mathematics, University of Bristol, Bristol, UK; bBentley Systems UK Limited,
London, UK

ABSTRACT
Accurately calibrated pedestrian destination choice models help
explain and predict foot traffic in public places by describing how
individuals choose locations to visit. Model calibration relies on
empirical data, which is subject to measurement errors that can
obfuscate calibration. This contribution adds errors to simulated
data in a controlled and realistic way which can be applied to
many model specifications, demonstrated on a pedestrian destina-
tion choice model. Results show that errors can cause calibrated
models to generate dynamics that differ substantially from the true
dynamics, along with causing bias in parameters and decreased pre-
diction accuracy. By quantifying the size of errors and the impacts on
calibration, this work aims to guide researchers in pedestrian desti-
nation choice modelling on what level of error is acceptable given
the scope of their research.
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1. Introduction

As the global population grows, particularly in urban areas, it is increasingly important to
understand and predict the flows and density of crowds in buildings and during large-scale
events to ensure safety and improve people’s experience of the environment (Murakami
et al. 2020). People walk to places because of a desire to perform activities (Miller 2014),
so understanding how pedestrians decide where to walk to and in what order they visit
locations is crucial for understanding and predicting pedestrian traffic. A commonly-used
framework for defining the behaviour of pedestrians is that proposedbyHoogendoorn and
Bovy (2004)which splits pedestrian behaviour into three levels: strategic, tactical, and oper-
ational. The strategic level is involvedwith decidingwhich activities to perform, where, and
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in what order. Tactical level relates to routeing and navigation behaviour. The operational
level manages the step-by-step movement and interactions.

Theoretical models, often based on the broader framework of discrete choice mod-
elling (Train 2009), have been developed to explain and predict the processes of pedestrian
destination choice (Danalet 2015). Common to most of these models is the assumption
that pedestrians trade off different factors against each other when making decisions (e.g.
(Danalet 2015; Hoogendoorn and Bovy 2004; Beaulieu and Farooq 2019)). Many factors
could be relevant, such as sociodemographic attributes of individuals (Wang and Li 2011),
a person’s habits and general mental state (Kielar and Borrmann 2016), and any spatial and
temporal constraints of the situation (Ettema, Borgers, and Timmermans 1993). Therefore,
the key challenges in pedestrian destination choice modelling are then to determine the
mechanism by which information about different factors is combined and to establish the
relative weighting or importance of these factors in determining the decisions of individu-
als. This contribution focuses on the latter problem and investigates challenges in learning
the relative weighting of these factors from data.

A common approach to determine the relative weighting of factors in pedestrian des-
tination choice is to calibrate theoretical models (Beaulieu and Farooq 2019; Dai 1998;
Danalet 2015; Ettema et al. 2007; Ying et al. 2019; Yang, Fik, and Zhang 2013; Tinguely
2015). Models encapsulate the assumed integration of information and their parameters
determine the relative importance of factors considered. Model calibration is the process
of deciding on values for model parameters that best fit available data. However, almost
all data collected from the real world contains errors. For example, measuring instruments
can only measure to a certain precision and will contain sources of random and/or system-
atic errors (Viswanathan 2005). These errors have the potential to disruptmodel calibration
by obfuscating the true relationships between factors and observed dynamics. Therefore,
it is important to assess the effects such errors have on the calibration process, including
estimates of model parameters, the accuracy of predictions made by the model, and any
alteration in dynamics predicted bymodels due to erroneous calibration. This contribution
is concerned with the effects of errors in data on the calibration of a pedestrian destination
choice model.

One of the earliest works suggesting measurement errors have an effect on discrete
choice model calibration was Kao and Schnell (1987), who found that not accounting for
errors introduces bias in the parameter estimates; a systematic deviation from the origi-
nal estimate, and demonstrated a simple means of accounting for said bias. This result was
corroborated by Hausman, Abrevaya, and Scott-Morton (1998), who, by performing a sim-
ulation study on a binary choice model using misclassification probabilities to add errors,
found that neglecting measurement error causes bias in Maximum Likelihood Estimates
(MLE) of hazard-duration models, illustrating their result on empirical data. Meyer and Mit-
tag (2017) also perform a simulation study on a binary choicemodel and confirm the results
by Hausmann et al. and further show that themisclassification probabilities depend on the
predictor being considered.

Bhatta and Larsen (2011) explore the impact of random errors in variables for a multino-
mial logit choicemodel in the context of transportmode choice for households at theurban
level. These authors use empirical data and apply measurement errors to access/egress
times and distances by drawing from normal, log-normal, and triangular distributions with
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different variances. They find that estimates of the parameters associated with erroneous
factors are downward biased (i.e. the parameter estimate is lower than expected from the
data without errors added), while the bias in other parameters is less predictable.

Jang, Rasouli, andTimmermans (2017) extend theworkof Bhatta andLarsen (2011), look-
ing at the effect of measurement errors on both random utility and random regret choice
model formulations. They also use empirical data but add additional noise to each variable
as a proportion of the variable’s intrinsic variance. Not only do they look at estimate bias,
confirming the results seen by Bhatta and Larsen, they also look at the impact on predic-
tion accuracy and find that it decreases with increasing measurement error. They find that
the sensitivity of parameters to changes in their associated predictors also increases with
increasing error.

Hausman, Abrevaya, and Scott-Morton (1998) andMeyer andMittag (2017) conduct sim-
ulation studies for binary choice models, rather than models of choices with more than
two alternatives, while Jang, Rasouli, and Timmermans (2017) and Bhatta and Larsen (2011)
investigate multinomial choice models allowing more than two options, but use empirical
data. Empirical data already contains inherent errors, and so studies using it measure the
impact of additional error relative to this already erroneous data, rather than determining
the absolute effect of errors. To the best of the authors’ knowledge there is currently no
simulation study on the effect of erroneous data on the calibration of a multinomial choice
model. There is also currently no consistent, systematic, and realistic method for artificially
adding measurement errors to data which does not depend on the specification of the
model. Having this would be a useful model calibration tool to assess whether the amount
of error present in candidate data will have a significant effect on model calibration before
such a model is used to make predictions or derive explanations for phenomena. Addi-
tionally, while previous work shows that measurement error introduces bias in estimates
of model parameters, it is unclear whether this bias is significant enough for the estimated
model to produce significantly different dynamics from the unbiased model. For example,
if a researcher is more interested in using their model to replicate the dynamics of a system,
rather than obtaining accurate parameter estimates, then the presence of measurement
errors may not be so important.

This paper attempts to address these gaps in the literature by assessing the effect of
errors in data on model calibration using data from an agent-based simulator as the start-
ing point. It is intended to be a guide for both empirical data collection and in choosing
data to calibrate a specifiedmodel, establishingwhethermodel calibration is feasible, either
in replicating observed dynamics or in accurately explaining observations, for different
amounts of measurement error in one or more variables.

The rest of this paper is organised as follows, the modelling framework is described first
(Section 2.1), followed by details on characterising the dynamics of the model (Section
2.2). Before results are presented (Section 3), details of how errors are introduced to sim-
ulated data (Section 2.3.1), the metrics used for assessing the success of model calibration
(Section 2.3.2), and the simulations performed (Section 2.3.3), are described. The interpre-
tation and implication of these results as well as the limitations of this work (Section 4) are
then discussed in detail before concluding remarks are made (Section 5).
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Figure 1. The simulator according to Hoogendoorn’s framework (2004).

2. Methodology

2.1. Simulationmodel

The computational model used in this study is written in Java by the authors and simulates
the full microscopic movement dynamics of a fixed number of pedestrians in a confined
space that contains a fixed number of destinations. Pedestrian behaviour described by the
model can be viewed as occurring at three different levels, as shown in Figure 1, following
Hoogendoorn and Bovy’s (2004) framework. The main focus of this work is on the calibra-
tion of themodel describing the strategic level – destination choice. The other behavioural
levels are modelled explicitly, as they determine inputs for destination choice, such as the
number of pedestrians at a destination which depends on how long it takes people to walk
between destinations, for example.

Operational-level behaviour handles the step-by-step movement of agents in continu-
ous space; describing the interactions between each other and the environment using a
force-based model derived from (Helbing, Farkas, and Vicsek 2000). Further details on the
implementationof thismodel canbe found in (BodeandCodling2013) and the samevalues
of all parameters as in this previous work are used throughout. In general, any pedestrian
movement model can be used, as the aim of this simulator is to look at destination choice
behaviour of pedestrians only.

Tactical-level behaviour describes howagents choose a route from their current position
to a chosen destination. Agents navigate using the shortest-distance route that is imple-
mented via discrete floor fields, as described in (Bode and Codling 2013). To conveniently
access the shortest routes towards all possible destinations, separate floor fields are imple-
mented for each destination. The preferred movement direction used in the force-based
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movement model of an agent is based on the local gradient in the floor field at its current
position.

A probabilistic discrete choice model grounded in Random Utility Theory (McFadden
1974) is used to describe agent destination choice in the simulator. There are many dis-
cretemodel specifications, eachwith their ownbenefits and limitations (Train 2009). For the
purpose of this contribution, the multinomial logit (MNL) model is capable of describing a
sufficiently broad range of behaviours:

Pi = eUi

∑
j∈C eUj

(1)

where Pi is the probability of choosing alternative i from the set of all possible alternatives,
C. This model makes use of a utility function for each alternative, Ui, which quantifies the
value of each alternative to a given decision-maker. From this specification, the alternative
with the highest utility is most likely to be chosen by a decision-maker.

2.1.1. Destination choicemodel specification
The destination choice model used here only considers three factors which are now briefly
discussed in turn: the occupancy of destinations, the distance that needs to be covered
to reach them, and how desirable they are according to the intrinsic preferences of each
individual.

How busy a destination is, or its occupancy, often impacts the likelihood of people visit-
ing it (Beaulieu and Farooq 2019; Kielar and Borrmann 2016; Saarloos, Fujiwara, and Zhang
2007; Hui, Bradlow, and Fader 2009). Sometimes occupancy can be attractive when it indi-
cates somethingworth visiting, such as acts at festivals, tourist attractions, andpromotional
events (Kwak et al. 2014). At other times, pedestrians seek to avoid high occupancy destina-
tions, for examplewhen shopping, or buying tickets for public transport. This factor is often
embeddedwithin other factors, such as time spent at a location (Ton2014), seating capacity
(Danalet 2015), or floor space (Zhu, Timmermans, and De 2006; Borgers and Timmermans
1986).

For most people in the majority of contexts, destinations further away are less likely
to be chosen than those nearby (e.g. Danalet 2015; Arentze, Ettema, and Timmermans
2013; Ettema, Borgers, and Timmermans 1993; Ettema et al. 2007; Fesenmaier 1988; Kurose,
Borgers, and Timmermans 2001; Li et al. 2019; Ton 2014; van der Hagen, Borgers, and
Timmermans 1991; Zhu, Timmermans, and De 2006). The investment of time and effort
involved in walking further could only be an attractive feature of a destination if the
decision-maker wishes to exercise, has no time constraints, or just enjoys the journey as
much as reaching a destination.

The intrinsic motivation of pedestrians to visit a destination is harder to quantify than
effects of occupancy or distance. Nevertheless, it is ubiquitous in pedestrian destination
choicemodelling. Many people visit a place with a certain set of activities to perform, often
in a certain order of ‘priority’ (Li and Allbeck 2011). This itinerary or schedule (related to
the Strategic Level in Hoogendoorn and Bovy’s (Hoogendoorn and Bovy 2004) framework)
of activities influences the destination choice behaviour of people in terms of the order of
destinations to visit. There have been many ways of quantifying the desirability of a desti-
nation in the literature, such as from market research (Fahmy, Alablani, and Abdelmaguid
2014; Yang, Fik, and Zhang 2013), using decay functions based on the supposed opinions
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of individuals towards destinations (Dijkstra, Timmermans, and de Vries 2013; Kielar and
Borrmann 2016), the number of transitions between destinations (Greenwood, Sharma,
and Johansson 2015), or using features of the location/building such as seating capacity
(Danalet 2015), and floor space (Ettema, Borgers, and Timmermans 1993).

This discussion suggests that depending on the context, factors can make destinations
appealing or undesirable for pedestrians. This can result in fundamentally different dynam-
ics depending on the context. Consider, for example, a situation where high occupancies
are appealing. This would lead to a positive feedback loop causing popular destinations to
become evenmore popular. In contrast, if pedestrians avoid high occupancies, they spread
more evenly across destinations. This also highlights the importance of accurate calibra-
tion. An extreme example would be a wrong sign for the estimated parameter capturing
the response to destination occupancies, representing a failure to accurately distinguish
between the two scenarios outlined above.

The three common predictors for destination choice identified above are considered in
the utility, Ui for each alternative i:

Ui = βoccn̂i + βdistd̂i + βdesq̂i (2)

where βocc, βdist , and βdes are the parameters corresponding to the predictors, n̂i is the nor-
malised occupancy of destination i (number of people at destination i), d̂i is the normalised
distance to destination i from the agent, and q̂i is a normalised measure of desire to visit
a destination i by the decision-maker (defined in more detail below). The predictors are
normalised for each decision to between zero and one by dividing each value by the max-
imum observed value of that predictor in the decision time-step. There are many reasons
for this normalisation, firstly it avoids the numerical computation problem of computing
very large or very small numbers. Second, it ensures that all predictors have the same range
such that the relative effects of each predictor on the choice probability depend only on
the relative values of the parameters. It also has the effect of setting a limit for the maximal
contribution of each predictor and means that parameters capture the relative strength of
the effects predictors have rather than effects per unit increase in predictors. The values of
these predictors are captured at the time the decision was made.

βocc and βdist can take positive and negative values, representing the potential for occu-
pancy and distance to have an attractive or repulsive effect, respectively. The parameter
βdes can only be positive, because it represents the effect of a person’s activity schedule. It
is assumed that parameters have the same values for all agents.

There have been many ways of quantifying the desirability of a destination in the litera-
ture (see above). In this work, the attractiveness of a destination for an agent is based on its
destination schedule.

qi,k(Ak ,�) = e−�si (3)

where qi,k is the desirability of destination i for agent k, Ak is the schedule of destinations
for k, si denotes the position of i in the schedule of k, and � is a parameter which con-
trols the strength of adherence of agents to their schedule. High values of � indicate a
strong tendency of agents to rigidly follow their schedule. Destinations further along the
agent’s schedule are of lower priority than those near the start. If a destination is not in an
agent’s activity schedule, then it is given a desirability of q = 1× 10−121. This value was
chosen as even if the destination is not in an agent’s schedule, it could still have some small
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default desirability. To illustrate this, consider the situation where an agent has destination
schedule A = (1, 2, 3, 4) and can choose between these four destinations. So q = (q1, q2,
q3, q4) = (e−�, e−2�, e−3�, e−4�) are the desirabilities for each destination. If the agent
in the example visits destination one, its schedule after the visit is now A = (2, 3, 4) and
q = (1× 10−200, e−�, e−2�, e−3�). Due to the requirement that agents do not choose to
visit the same destination that they are currently located at, in practice destination 1 and
therefore q1 would not be considered when choosing the next destination to visit.

2.1.2. Simulations
Though the processes described in this section are general to any model specification and
simulated environment, the results of this paper are applied to one particular environment
shown in Figure 2. The simulated environment is primarily characterised by the locations of
walls and destinations inside a square of 20m by 20m, though other environment shapes
and sizes are possible in general. Its shape resembles that of a horseshoe, and it could
be thought of as representing a shopping centre with an open space in the middle and
shops (destinations) lining the outer edge. This placement of walls in this environment is
deliberately designed to reduce symmetry ensuring a spread of distances from each desti-
nation to every other. Highly symmetric environments can result in special dynamics that
are illustrated in the appendix (see Appendix A). The grey areas represent the size of each
destination. Any agent within these areas is counted as being present at the destination
for calculating occupancy and for determining whether an agent has arrived at its chosen
destination. These areas are circular with a radius of 3m, any free space that lies within this
distance from the destination coordinate (coloured squares) is included in this area. All sim-
ulations for the parameter scan and for the error study below are performed for 80 agents
over 10,000 time-steps (=500 s) in the horseshoe environment shown in Figure 2.

At the start of simulations, each agent is given a random initial position, along with a
schedule of destinations, which describes the order in which an agent wishes to visit des-
tinations. The length of this schedule is fixed, but each agent has a random arrangement
of all possible destinations, where each destination only appears once in the schedule. The
schedule length is fixed such that everydestination is present only once in anagent’s sched-
ule. This was inspired by reality, as in many situations, people do not perform the same
activity at the same place more than once during a given trip. Different destination sched-
ules are possible and may even be likely in reality. Random schedules were chosen as they
reduce correlations between desirability and the other predictors, as well as correlations
between agents. An example in the appendix illustrates effects of destination schedules
fixed over agents (see Appendix A, Figure A4). Schedules are updated every time an agent
chooses a newdestination by removing the first instance of a destination the agent has just
visited if it appears in the schedule. Otherwise, the schedule remains unchanged. The initial
destination agents visit is chosen at random from all destinations at the start of simulation.
The quantities d̂i, n̂i, and q̂i in Equation (2) are determined from the initial positions of the
agent, of all other agents, and the schedule of the agent, respectively.

For each time-step in simulations (0.05 s), the position, speed, and direction of move-
ment for each agent are updated according to their current destination and its associated
floor field using the operational level model (for details, see (Bode and Codling 2013)).
The occupancy of destinations is recorded at each time-step and defined as the number
of agents inside each destination area, an unobstructed region of radius 2m around the
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Figure 2. The environment used in simulations.White space indicates free space outside of destinations
areas, grey is free space within destination areas that are defined as unobstructed areas within a fixed
radius of destination centres (shown as coloured squares). Walls are shown in black. The discrete nature
of the floor field is visible.

centre point of the destination (see Figure 2). If an agent enters the area of its chosen des-
tination, it is assigned a waiting time during which its preferred movement direction is set
to the centre of the destination area. Waiting times for all agents and destinations in simu-
lations are sampled from an exponential distribution with parameter λ = 0.003 and with a
constant t0 = 20 s added to reflect a non-zero minimal time agents spend at a destination.
Once their waiting time has passed, agents choose a new destination that must be distinct
from their current destination.

2.2. Destination choicemodel characterisation

Todemonstrate the range of dynamics the destination choicemodel can produce, a param-
eter scan of the model is performed. The following set of integer combinations of param-
eters are considered: βocc,βdist ∈ ±5, ±4, ±3, ±2, ±1, 0 and βdes ∈ 0, 1, 2, 3, 4, 5. These
values were chosen to ensure a representative spread of observable dynamics from the
destination choicemodel that gave accurate and robust calibration fromnumerical estima-
tion (see Section 2.3). Thismeans that 11× 11× 6 = 726different parameter combinations
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are considered in the three-dimensional parameter space of themodel. The parameters are
integers out of convenience, as longas the combinations considered represent thedifferent
dynamical regimes of the model, the actual values of the parameters do not matter.

To quantify the dynamics observed, two summary statistics are defined. Destination
Coverage (DC) is defined as the proportion of unique destinations visited by each agent,
averaged over all agents in the simulation, where a high DC indicates thatmost agents visit
most destinations over the course of the simulation. Occupancy Interquartile Range (OIQR)
is defined as the average interquartile range of occupancies across destinations over all
timesteps. A high OIQR indicates that most destinations show large variation in occupancy
over time.

The average values for these summary statistics is computed over 100 simulation repli-
cates. Results from the parameter scan are used to identify a set of parameter combinations
for the error study that capture a representative range of model behaviours. Combinations
are denoted as vectors (βocc, βdist , βdes). (0, 0, 0), corresponding to random destination
choice, is included to act as a reference case.

2.3. Error study

Figure 3 provides an overview of the simulation study performed to investigate the impact
ofmeasurement errors onmodel calibration. This sectionwill explain theprotocol of adding
errors (Section 2.3.1), describe the three metrics used to assess calibration success (Section
2.3.2), and provide details for the simulations undertaken (Section 2.3.3).

2.3.1. Adding errors
The approaches for adding errors to observeddestination sequences, destination occupan-
cies, and distances between destinations will now be discussed in turn.

Previous works suggest the sequence of destinations can be inferred in two main ways:
first, using spatial positioning instruments, like Global Positioning System (GPS), Wi-Fi,
or video cameras e.g. (Danalet 2015; Ton 2014; Ying et al. 2019; Yoshimura et al. 2014;
Greenwood, Sharma, and Johansson 2015). These can be used to create trajectories for
individuals. Combining this with information about the locations of places of interest, the
destinations visited by people can be inferred. Second, surveys or questionnaires can be
used as a way for individuals to self-report the sequence of destinations they visited (e.g.
Ettema, Borgers, and Timmermans 1993; Zhu, Timmermans, and De 2006; Arentze and
Timmermans 2004; Ruiz, Chebat, and Hansen 2004; Wang and Li 2011). Either of these
approaches to collecting data on the sequence of destinations visited by an individual can
result in errors when destinations are misidentified, missed or erroneously detected. Only
misidentifications are considered here, as adding or deleting sequence elements could
artificially alter the overall amount of data available for calibration which would hinder a
principled comparison of calibration success (e.g. see predictive power in Section 2.3.2).

Destinations can be misidentified resulting in the substitution of one destination for
another. This could occur due to recall error of individuals in surveys, ormeasurement errors
in location data. For example, consider the measurement error in GPS signals which can be
on the order of several metres. In data collection this may make it difficult to distinguish
locations that are in close proximity.
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Figure 3. Overview of the error study procedure.

Destination substitutions are implemented on the chosen destination sequences of
agents. For each element in the sequence of chosen destinations of an agent, a substitution
is performed with a fixed probability. This process is performed for every agent in the sim-
ulation. The size of the probability adjusts the sequence error, and represents the expected
proportion of altered destinations across all agents in a simulation. As this procedure is run
over many destination sequences, on average, the altered proportion of destinations will
be very close to the sequence error value.

For any substitution, the set of available destinations are those which are different to
both the original destination and the destinations immediately before and after it in the
sequence. This is to ensure that destination sequences contain no identical consecutive
elements, as these could be detected and filtered out in data cleaning (although relaxing
this assumption is possible). If the destination is at the beginning or end of a sequence,
then only the destination immediately after or before the chosen destination is considered,
respectively. These constraints on substitutions can have the effect of introducing artificial
structure to substituted sequences, particularly if there are fewdestinations to choose from
(see Appendix A).

For illustration, consider a simulation in an environment with four destinations. In this
example, each destination has a unique integer identifier from 0 to 3. Consider a sequence
of chosen destinations: (0, 2, 3, 1, . . . ). Suppose a sequence error of 0.25 (or an average of
25% of all chosen destinations being altered) is applied to this data and that the second
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sequence element in the sequence above is selected to be substituted. The only destina-
tion available for substitution for this sequence element is 1, as the preceding, current and
following destinations form the set 0, 2, 3. Thus, the resulting sequence after the sequence
error is applied is: (0, 1, 3, 1, . . . ). As statedabove, this procedure is performed for all sequence
elements and agents in a simulated data set.

Errors in occupancy observations can arise from measurement errors. The occupancy
of a place/room is often measured by using some kind of counting instrument, such as
infra-red (IR) scanners (Ton 2014), manual counting (Benezeth et al. 2011), or vision-based
sensors (Scovanner and Tappen 2009). These methods can miscount the number of peo-
ple, especially when occupancy is high. Occupancies must be non-negative integer values,
as there cannot be a negative number of people in a space, nor can there be only part of
a person in a space. With this in mind, a discrete distribution bounded at 0 is appropriate.
Therefore, occupancyerrors are implementedbydrawinganewoccupancy fromabinomial
distribution B(m, p), wherem and p are parameters. These are calculated by requiring that
its mean, µ = mp, is the true occupancy and by letting the size of the occupancy error be
q = 1− p. The variance of the binomial distribution is given byσ 2 = mp(1− p), so the error
value controls the spread of values around the true occupancy. The upper bound for the
occupancy error is given by the case when the binomial distribution has maximal variance,
σ 2
max, which occurs when p = q = 0.5. The remaining, smaller, error values are obtained

by setting different values for this probability to achieve different proportions of σ 2
max. The

relation between variance and mean of the binomial distribution implies that the spread
of possible erroneous occupancies increases as the true occupancy increases, as seen in
reality.

Errors in estimating the distances between destinations can arise from measurement
errors or difficulties in defining this distance in cases when the spatial extent of a destina-
tion is not clear. Distances are non-negative continuous values, so a continuous distribution
bounded at zero is appropriate. A log-normal distribution, Lognormal(ν, γ 2) satisfies these
conditions, where ν and γ are parameters. The true distance is set to be the mode of the
distribution θ = exp(ν − γ 2). γ acts as a proxy for the error size, so the value of ν can
be determined. However, being bounded at 0 makes the distribution asymmetric about
the mode, with a larger range of possible distances above the mode than below it, this is
unavoidable if the distribution is non-negative. But this asymmetry decreases as the mode
increases.

These error specifications are designed to replicate real sources of error in these mea-
sured quantities. Errors in the schedules of agents were not considered explicitly. In real
data, it is often impossible to know a person’s true desires and priorities during data col-
lection. Uncertainties around this aspect of behaviour are only considered implicitly via
sequence errors. The implications of this and the possibility for extending this contribution
are discussed in Section 4.

2.3.2. Metrics
Several metrics are used to assess the effect of errors onmodel calibration. First, the impact
of errors on the ability of the model to explain the data, and hence make accurate pre-
dictions is given by the predictive power (PP), which is the final optimised negative log
Likelihood (NLL) (Bhatta and Larsen 2011). A large NLL indicates that themodel fits the data
poorly and any subsequent predictionsmade by themodel will be less accurate, i.e. a small



12 C. KING ET AL.

predictive power. The model was calibrated on data with and without added errors from
the same 40 replicate simulations for each parameter combination to prevent any effect
on PP due to using different amounts of data in calibration. To facilitate comparison of the
effect errors have on PP across parameter combinations, the following normalised quantity
is reported:

P̂Pg = max(PP) − PPg
max(PP) − min(PP)

(4)

where PP is a vector of PP values obtained for each value of an error type for a given param-
eter combination, PPg is the PP for the gth error value, andmax andmin are functionswhich
find the maximum and minimum element in a vector, respectively. It is also assumed that
there are at least two unique elements of PP, so that max(PP) �=min(PP).

To investigate the effect of errors on the values of the parameter estimates, the estimate
bias is defined as in Jang, Rasouli, and Timmermans (2017):

b = β∗
e

β∗ (5)

where β∗
e is the estimate of a parameter using data with added errors, and β∗ is the cor-

responding estimate from perfect data. b > 1 indicates that errors cause positive bias in
the estimate and vice-versa for b < 1. The bias is not calculated for the (0,0,0) reference
case, as the parameter estimates are small and can readily change sign, which would cause
largebiases tobeobserved. It shouldbenoted that this definitionof bias allows the effect of
errors on each unique parameter value to be quantified. Though comparison of biasmagni-
tudesbetweendifferent parameter values is impossible, due todifferent parameters having
different β∗ .

To assess quantitatively whether the model dynamics produced by two sets of param-
eter values are similar, the Kolmogorov–Smirnov (KS) statistic is used to compare the
distributions of the destination coverage (DC) and occupancy interquartile range (OIQR)
produced via simulations using the different sets of parameter values. It is possible for dif-
ferent parameter combinations to produce similar dynamics, even if the magnitude of b
described above is large.

To facilitate comparison of the effect errors have across parameter combinations, a rela-
tive KS value is used. Themodel is calibrated 25 times on the datawithout added errors and
each calibration uses a different subset of 40 replicates from the original 100 performed as
part of the parameter scan. Following calibration, a further 100 simulationswere performed
for each of these 25 parameter estimates to obtain estimated summary statistic distribu-
tions. Thesewere compared to the original distributions obtained from the parameter scan.
This resulted in 25 KS values for each chosen parameter combination, the median of which
was used as the reference KS value for that combination (see Figure 3).

To obtain relative KS values indicating the effect of errors, the KS value between the orig-
inal summary statistic distributions from the parameter scan and those from simulations of
models calibrated on data with added errors are generated for each parameter combina-
tion and error value. Repeating this over multiple replicates of adding errors to data (see
Section 2.3.1) produces a set of KS values for each chosen combination and error value. The
reference median KS for each combination is then subtracted from the median of this set
to obtain the RelativeMedian KS (RMKS). The RMKS thus quantifies the change in dynamics
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in model simulations when themodel is calibrated on data with added errors compared to
a calibration on data without added errors.

Together, these metrics aim to give a comprehensive quantitative assessment of the
impact of errors on model calibration.

2.3.3. Error study simulations
The following error values were applied to the perfect data: occupancy error (1− p in the
binomial distribution) (0.0675, 0.125, 0.25, 0.375, 0.5), sequence error (average percentage
of chosen destinations substituted over all agents) (1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100),
and distance error (γ in the log-normal distribution) (0.05, 0.1, 0.15, 0.2, 0.25). The process
of adding each of these errors individually to the data was repeated 10 times for all types
and levels of error, as the process of adding errors is random, and so could have different
impacts onestimates andmetrics. The average effect of each error on eachmetric alongside
two standard deviations is reported.

The choice model is calibrated on simulated data (or simulated data with added errors,
as described above) using Maximum Likelihood Estimation (MLE), implemented with the
optim function in the R programming environment (R Core Team 2020). By using the
destination sequences as the observed data, with observed destination occupancies, des-
tination distances, and destination desirabilities being substituted into the utility function
in Equation (2), which is thence substituted into Equation (1), estimates of model parame-
ters, β∗

occ,β
∗
dist ,β

∗
des are obtained. For given input data, the calibration process is repeated

10 times with random initial parameter values in the optimisation routine to avoid only
detecting local maxima in the Likelihood. Estimates from the calibration with the lowest
final Negative Log Likelihood (NLL; corresponding to themaximal Likelihood) are retained.
Importantly, if no errors are added to the simulated data this implies perfect knowledge
of destination occupancy, the distances between destinations, and the schedule of agents,
which is unlikely tobe available in all real-world applications (further discussed in Section4).

The error study is performed on a selection of parameter combinations, as explained
in Section 2.2, and uses simulated data without errors as its starting point. Parameters are
calibrated on the combineddata of a randomsample of 40 out of the 100 replicates for each
parameter combination selected from the parameter scan, as this resulted in sufficiently
stable estimates. Subsequently, errors are introduced to this sample of simulated data and
the calibration success is measured by comparison to the calibration on the data without
added errors.

Model calibration on the various kinds of data with added errors was conducted in the
samemanner as for the datawithout added errors. This generates parameter estimates and
PP values for each combination for each value of each type of error. The estimates gener-
ated are used to calculate the estimate bias, b, and as input for the simulations to compute
the Relative Median KS (RMKS).

3. Results

This section first provides the results of the parameter scan; a characterisation of the
range of dynamical states that can occur in simulations of the model and the parameter
combinations chosen. It then demonstrates how the calibration of the model is affected
when different levels of errors are introduced in the data.
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Figure 4. Destination coverage for different distance, desire, and occupancy parameter values. The
combinations used in the error study are marked by blue dots. (DC = Destination Coverage).

Figures 4 and 5 show how changing the parameters of the destination choice model
affects the dynamics in simulations, as measured via the summary statistics Destination
Coverage (DC) and Occupancy Interquartile Range (OIQR).

Since the occupancy, distance, and desirability of destinations are normalised, the rel-
ative size of parameter values is crucial in determining the behaviour of agents. Figure
D2 shows that agents visit more unique destinations when the distance parameter is
small and the desire parameter is large. This can be explained by the fact that the desire
parameter controls how influential the agent’s schedule is on their choice of destina-
tion and since the schedule of agents is a random arrangement of every destination,
agents are likely to visit many different destinations. Conversely, a high distance param-
eter, either positive or negative, encourages agents to visit only destinations furthest
from or closest to their current destination, respectively, resulting in only a selection
of destinations being visited frequently. A large positive occupancy parameter with a
large negative distance parameter shows the lowest DC, because agents are compelled
to visit the busiest destination, which is likely to be close to them due to influence
of the distance parameter, resulting in pairs of close destinations being visited often,
with random fluctuations allowing these pairs to change (see video 1 in supplementary
material).

For negative occupancy parameters, the OIQR only varies within a narrow range as the
other two parameters are varied and shows a maximum for large negative distance and
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Figure 5. Occupancy Interquartile range for different distance, desire, and occupancy parameter values.
The combinations used in the error study are marked by blue dots. (OIQR = Occupancy Interquartile
Range).

small desire parameter values. Here the influence of agent’s diverse schedules is negligible,
and agents are compelled to visit the closest destinationwhile avoidingbusier destinations.
The latter effect means that destinations will oscillate between busy and empty, leading to
awide range of occupancies across destinations at any one time (see video 2 in supplemen-
tary material). The behaviour for positive occupancy parameters instead shows a region of
high OIQR within the parameter range considered that increases in size as the occupancy
parameter increases. This reflects agent’s increasing desire to visit the busier destinations.
Combining this effect with the desire to visit closer destinations, this results in a pair of
close destinations becoming consistently busy, leading to a small OIQR across destinations
on average over time.

These results show that themodel can describe different dynamics ranging from agents
concentrating at a fewdestinations to them spreading outmore evenly across destinations.
Based on these results, the following set of parameter combinations was chosen for the
error study to capture a representative range of theDC and/orOIQR values that are attained
inmodel simulations: (−2,−1,1), (−1,−4,1), (1,−1,4), (2,−3,3), (4,−4,1). For example, combi-
nation (βocc,βdist,βdes) = (4,−4,1) hasboth a lowDCandOIQR, and (2,−3,3) sits in an ‘island’
of high OIQR. The parameter values for the chosen combinations are represented by blue
dots in Figures 4 and 5.
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Figure 6. Average bias in eachmodel parameter due to each type of error. Error bars show two times the
standard deviation of bias over 10 repetitions of adding errors to perfect data. Each line shows a different
combination of original parameter values. Parameter combinations are shown in the format βocc , βdist ,
βdes.

The remainder of this section describes the results of the error study. Each metric
described in Section 2.3.2 is considered in turn for all chosen parameter combinations, error
types and values.

Figure 6 shows thebias in eachparameterwith each typeof error. Firstly, there is noobvi-
ous trend in bias with occupancy error on the distance parameter estimate, and vice-versa
across parameter combinations (Figure 6a,e). However, distance and occupancy errors
cause downward bias in their respective parameter estimates (Figure 6b,d). This makes
sense considering that the distance from a destination is independent of its occupancy, so
any error applied to one of these should not impact the estimate of the other’s parameter.
The attenuation indicates that the presence of errors reduces the effect of their accompa-
nying predictors, such that with more errors introducing randomness to their respective
predictors causes the calibrated model to becomemore like the random choice model.

Sequence errors appear to have the greatest effect on the bias of all three parameters,
with each showing strong attenuation as errors increase (Figure 6g, h, i). This significant
effect could arise from the fact that these sequences are at the heart of MLE for the model,
and so any significant changes to these sequences can have drastic effects on any trends in
destination choice due to any of the three predictors.



TRANSPORTMETRICA A: TRANSPORT SCIENCE 17

Figure 7. Average normalised predictive power of the choicemodel for all combinationswith each type
error. Error bars show two times the standard deviation of predictive power over 10 repetitions of adding
errors to perfect data. Parameter combinations are shown in the format βocc , βdist , βdes.

There also appears to be downward bias in the desire parameter with distance errors
(Figure 6c), albeit the strength of this effect seems to depend on the parameter combina-
tion. One possible source of correlation between these parameters could come from the
way in which destination schedules of agents relate to the configuration of destinations in
the environment even for randomised schedules (for a clear link in this regard seeAppendix
A, Figure A4).

The results for the normalised predictive power are shown in Figure 7 (see Equation (4) in
Section 2.3.2). This confirms what might be expected intuitively: the predictive power gen-
erally decreases with the introduction of any error for all parameter combinations except
(βocc, βdist , βdes) = (0, 0, 0). For sequence errors, predictive power reaches a minimum
when80%of all chosendestinations are altered and subsequently increases again for larger
sequence errors (Figure 7c). This increase could result from artificial structure being intro-
duced into the data due to the constraint that agents have to visit new destinations when
destinations are substituted. The model could then be fitted to this artificial structure with
a different set of parameters. This notion is supported by the estimate bias in Figure 6h, i,
where the signs of the occupancy and desire parameters begin to become negative above
this sequence error. The strength of this effect depends on the environment, specifically
how many destinations there are and how they are arranged, as shown in the appendix at
the example of an empty room with four destinations arranged symmetrically in a square
(see Figure A5). The parameter combination (0, 0, 0) shows completely different behaviour
to the other combinations, with much larger variation over error study replicates. This
makes sense, as this is the random destination choice model. Adding a random source of
error to a set of random data does not make it any less random. It could be argued that for
sequence errors, the predictive power of (0, 0, 0) peaks at 50% error, but the large overlap
of error bars suggests a high degree of variability that makes any interpretations of such
effects tentative.

The Relative Median KS-statistic (RMKS) values shown in Figure 8 indicate that the
distanceerrorshavenoeffect on thedistributionsof either summary statistic – for all param-
eter combinations there is no significant increase above zero. This suggests that distance
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Figure 8. Average difference in median erroneous KS values and median perfect KS values for desti-
nation coverage and occupancy interquartile range for every parameter combination plotted against
each error type. An example of when the summary statistic distributions change significantly (a)
and minimally (b) are shown to illustrate the kinds of differences seen between distributions. Error
bars show two times the standard deviation of RMKS over 10 repetitions of adding errors to perfect
data. Parameter combinations are shown in the format βocc , βdist , βdes. (DC = Destination Coverage,
OIQR = Occupancy Interquartile Range).

errors do not affect the calibration of the model substantially enough to result in differ-
ent dynamics, as measured by DC and OIQR. This is supported by Figures B1 and B4 in the
appendix, which show that both summary statistic distributions for the estimated model
with distance errors are not significantly different from the original estimated distribution.
Similarly, occupancy errors have no significant effect on the RMKS for DC, which is corrobo-
ratedby Figure B5 in the appendix. Occupancy errors cause little significant change in RMKS
for OIQR, except for parameter combinations (−2,−1, 1) and (2,−3, 3), which show a small
increase, but the overlapping error bars suggest that this effect is subject to substantial
variability. Figure B2 in Appendix B shows that for (−2,−1, 1), the original estimated distri-
bution is strongly peaked at around 4.5, but this peak decreases and shifts down slightly in
occupancy as errors increase. Theopposite seems tooccurwith (2,−3, 3),where theoriginal
estimated distribution has two smaller peaks, while the distributions for data with added
errors show one larger peak. Again, this suggests that occupancy errors do not affect the
calibration of the model substantially enough to result in different dynamics, as measured
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by DC andOIQR. Figure 8b is a representative example of how similar the summary statistic
distributions are in this case.

The RMKS with sequence errors shows slightly different behaviour for the two sum-
mary statistics. The parameter combination (0, 0, 0) shows little change in either summary
statistic. This makes sense as adding additional random noise to a random model will not
cause any significant shifts in dynamics. Even though (1, −1, 4) shows little change in the
OIQR distributions, it shows some of the highest changes in DC distributions, as evidenced
by Figure 8a, where DC decreases significantly with increasing sequence error. (−2, −1,
1) shows a continuous increase in RMKS for both summary statistics, indicating that the
sequence errors disrupt the calibration enough to fundamentally change the dynamics.
The distributions of this combination with sequence errors (Figures B3 and B6) show a
gradual downwards shift in the distributions as sequence errors increase. For parameter
combination (−1, −4, 1) the RMKS for OIQR increases continuously, but the RMKS for DC
seemingly oscillates at low values, indicating that sequence errors between 20% and 50%
actually make the DC distributions more similar. From Figure B6 in Appendix B, it can be
seen that initially, the distributions shift upwards slightly for small sequence errors, before
shifting back downwards for subsequent errors. Parameter combination (2, −3, 3) has a
continually increasing RMKS for DC like (−2, −1, 1), but its RMKS for the OIQR appears to
plateau after 30% sequence errors. Figure B3 in the appendix reflects this trend, showing
that the original distribution is quite broad, and sequence errors narrow the distribution
and shift the peak downwards, but the distributions are similar for larger sequence errors.
Parameter combination (4,−4, 1) shows a sharp increase in the RMKS forDCbefore plateau-
ing after 30% errors, showing that the DC distribution changes little beyond this point,
as shown in Figure B6 in Appendix B, where the distributions shift upwards and become
more peaked, converging at DC ≈ 0.6. The RMKS behaves similarly for OIQR, but begins
to increase again above 80% error. Again, this is observed in the distributions shown in
Figure B3 in Appendix B, where the distributions for data with added errors shift to higher
OIQR values and narrow, stabilising at peak OIQR of ≈ 3.5, before starting to shift upwards
again. This shows that each summary statistic captures a different aspect of the dynamics
and that both are needed to fully quantify such dynamical changes. It also highlights that
the change in dynamics in calibrated models due to measurement error depends on the
original dynamics and the type of measurement error applied.

In reality, errors exist in all measured data simultaneously, and it is unclear how their
effects on model dynamics might interact. To investigate this, the error study is repeated
with all three errors implemented. The error study procedure is repeated five times and the
average results are reported. To keep the number of error combinations at a manageable
level, the number of sequence error values is reduced to (10, 30, 50, 80, 100) and only the (1,
−1, 4), (−1,−4, 1), and (−2,−1, 1) are considered. These particular combinationswere cho-
sen because they are representative of the different RMKS behaviours over both summary
statistics. Heatmaps of how the RMKS for both DC and OIQR change with both occupancy
and sequence error at constant distance error values are shown in Appendix D. Comparing
these with Figure 8, it is clear that combining errors does not lead to significant changes
in how the dynamics vary with each error type. For example, the DC RMKS for (−1, −4, 1)
combination shows the same oscillatory behaviour with changing sequence error in the
combined error study as seen in the single error study. However, the OIQR RMKS for (1,−1,
4) does indicate that the impact of sequence errors does vary a little with occupancy error,
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but this could be noise, as the change in RMKS is quite low here. With this exception, these
results suggest that, in this particular case, these errors act independently in altering the
dynamics of the calibrated model.

4. Discussion and future work

The key contribution of this research is a systematic investigation of how measurement
errors in data affect the calibration success of destination choice models in pedestrian
dynamics. A novel and rigorous methodology for introducing errors to data is presented,
inspired by sources of real measurement error. Findings confirm that measurement errors
can cause significant bias in destination choice model parameters, decrease the ability of
themodel tomakeaccuratepredictions, and in somecases, can cause significant changes to
the dynamics. A parameter scan and suitably chosen summary statistics show that a simple
destination choice model, the multinomial logit model with three predictors, can gener-
ate a variety of pedestrian choice dynamics. Importantly, the effect of measurement errors
on calibration success can depend on where in the parameter space of the model the true
dynamics are situated.

The results concerning bias in calibrated model parameters are in agreement with pre-
vious work (Bhatta and Larsen 2011; Jang, Rasouli, and Timmermans 2017) and thus add
to the consensus thatmeasurement errors reduce the impact of their associated predictors
on decision-making. However, the impact of errors directly related to one parameter on
other model parameters is impossible to predict, as previously stated by Bhatta and Larsen
(2011). The reduction in predictive power of the calibrated model with increasing errors
also agrees with previous work (Bhatta and Larsen 2011; Jang, Rasouli, and Timmermans
2017). This result is not unexpected, as a model fitted to data which is generated using the
samemodel will explain almost all variation and is likely to make very accurate predictions.
Errors obfuscate the data, adding variability not explained by themodel, and hence reduce
the accuracy of anymodel predictions. The change inmodel dynamics in calibratedmodels
compared to the true dynamics due to errors is less straightforward to explain. This effect
depends onwhere in the parameter space of themodel the true dynamics are located, and
on the simulation environment considered.

Two main applications for this research are envisaged. First, as a guide to qualitatively
inform researchers planning empirical data collection with a view to calibrating models
where to direct their efforts. Second, as a way for researchers to gauge the likely calibration
success for a model calibrated on given data. For both cases, the key observation of this
research is that errors in somemeasurements havemore of an impact onmodel calibration
than others. Specifically, measurement errors in the predictors, in this case occupancy and
distance, have a substantially weaker effect than errors in the sequence of visited destina-
tions in the findings presented here. While the precise details of how errors affect model
calibration are likely to also depend on the amount of data available, the model, and the
specific context considered (see also discussion below), the findings presented here are a
starting point for considerations on what level of error in which measurements is accept-
able, if the goal is to obtain accurate and consistent parameter estimates and/or seek to
replicate the observed dynamics. For example, if chosen or visited destinations are being
inferred, either frompositioning technologies likeWi-Fi or through surveys, great caremust
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be taken to minimise and quantify the error, as errors in these inferences can cause drastic
changes to both calibration estimates and the observed dynamics.

This contribution is intended as a rigorous starting point for considering the effect mea-
surement errors in data have on the calibration of destination choice models in pedestrian
dynamics. There are several ways in which this research could be extended.

First, only one discrete choice modelling framework (multinomial logit) and one
approach to calibration (MLE) was considered here, even though a range of different
approaches have been used previously (Carroll et al. 2006; Dai 1998; Schennach 2016). The
approach presented here for generating simulated data, applying errors to it, and assess-
ing model calibration provides a recipe that is applicable across modelling and calibration
methods.

Second, simulated data is used to test the effects of errors on model calibration. While
this data allows us to know the true mechanisms which generated the data, it is unclear
how well the results presented here translate to real data.

Third, the simulated environments considered here are comparatively small (20× 20m)
and there is evidence to suggest that the layout of the environment can impact the results
(see Appendix A). Thus, it may be necessary to perform separate error studies for envi-
ronments that differ substantially from those shown here. This is part of a larger issue
which is that the dynamics observed are dependent on the simulated environment, as
the simulator also incorporates the microscopic movement of pedestrians. The extent to
which the destination choice model itself depends on the environment would depend on
the predictors involved and whether a normalisation of said predictors was undertaken.
In this instance, occupancy and distance values depend on the environment and/or the
microscopic behaviour. However, since they are normalised, these effects are minimised.

Fourth, in these scenarios, it is assumed that each destination has one unique activity
that can be performed there. Whereas in reality, destinations can have several activities
associated with them, depending on the activity and destination area specifications. For
example, a coffee shop could have ‘buying a coffee’ and ‘sitting at a table’ as two possible
activities or the shop could have two destinations within: the counter and the tables. There
could alsobemultiple coffee shops available to adecision-maker tobuy coffee. Lifting these
constraints could therefore improve the realism of the scenarios.

Finally, the application of errors to data could be refined further. For example, it is more
likely for destinations that are close to each other to be mistakenly identified using posi-
tioning technologies, while further apart destinations are highly unlikely to bemistaken for
eachother (Baba 2017; Rieser-Schüssler 2012). Thus, using adistance-based function for the
probability of substituting one destination for another, rather than assuming equal substi-
tution probabilities for all destinations could add another layer of realism to the research.
Additionally, other distributions could have been used to sample distance errors, for exam-
ple, a gamma or truncated normal distribution. However, it is unlikely that using a different
distribution would cause any significant difference in the presented results, unless there
was significant skew or kurtosis in such distributions. Moreover, knowledge of individu-
als’ schedules has been assumed here with uncertainties about this only being considered
indirectly via sequence errors. Thus, an important extension could be to either explicitly
infer schedules from data or to define errors to desirability that are meaningful and reflect
uncertainties in estimating the schedules of individuals (e.g. via surveys). Inferring sched-
ules fromdata could be achievedby inferring themost likely sequences of desired locations
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fromdata usingHiddenMarkovModels in a similar approach tomethodology that has been
used for inferring behavioural states in animals (Bode and Seitz 2017).

5. Conclusions

This paper investigates the effect of measurement errors on discrete choice model cali-
bration in the context of pedestrian destination choice. A novel coupling of a destination
choicemodel to an agent-based simulator is presented. Characterising the dynamics of this
model through a parameter scan shows that a wide range of dynamical regimes are attain-
able. A novel protocol for adding errors to different measured data inspired by real error
sources is applied to simulated data to observe what effect errors have on choice model
calibration. The results showhowdifferent types of errors affect calibration success asmea-
sured by bias in parameter estimates, prediction accuracy, and changes in the dynamics in
simulations of calibratedmodels compared to the true data. Errors in the sequence of desti-
nations visited by individuals had a substantially stronger detrimental effect on calibration
success than errors related to properties of destinations, such as the number of people vis-
iting them or the distance between them. This work presents a principled starting point for
informing data collection protocols for empirical pedestrian destination choice research
and for indicating the likelihood of a successful calibration of models on available data.
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Appendices

Appendix A. The empty room

This appendix details results for an error study on another setting, an empty room, shown in Figure
A1. These additional results for a highly abstracted and simple setting serve to indicate the relevance
of the spatial configurations of destinations on the calibration process in the presence of errors. The
space is 20× 20mwith the destinations arranged at the corners of a square centred at the middle of
the space with sides of length 16m. There are no obstacles besides the bounding outer walls.

The entire error study process, summarised in Figure 3, was conducted on this environment with
the simulator conditions detailed in Table A1.

Table A1. Simulator inputs for
the error study on an empty
room. All other simulator condi-
tions are identical to those used
in the main text.

Input Value

Number of agents 100
Timestep / s 0.05
Number of Timesteps 10,000
Simulation Replicates 100
Number of destinations 4

https://eml.berkeley.edu/books/train1201.pdf
https://link-springercom.bris.idm.oclc.org/article/10.1007/BF01463442
https://www.sciencedirect.com/science/article/abs/pii/S0160738313001023
https://journals.aps.org/pre/abstract/10.1103/PhysRevE.100.062304
https://journals.sagepub.com/doi/10.1068/b130047p
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Figure A1. Empty room environment. White space indicates free space outside of destinations, grey is
free space within a destination area. Coloured squares are destination centres. Obstacles and walls are
shown in black. The discrete nature of the floor field is visible.

Figure A2. Destination coverage for different distance, desire, and occupancy parameter values. The
combinations used in the error study are marked by blue dots. (DC = Destination Coverage).

As for the environment considered in the main text, there was no variation in βocc, βdist , and
βdesacross agents. The destination schedule for all agents was the sequence ‘1234’ repeated 100
times, so that every destination would have a non-negligible desirability for every decision made by
every agent during simulation. The parameter scanwas performedwith the same constraints on βocc ,
βdist , and βdesas in the main text.

Results from a parameter scan are shown in Figures A2 and A3. As for the environment considered
in the main text, the combination (0,0,0) acts as the reference case. The following additional combi-
nations are chosen based on their high or low DC and/or OIQR: (−2,−1, 1), (3, 2, 1), (3, 3, 1), (3,−3, 2),
(4, −4, 1), (−4, 4, 4), these combinations are marked by blue dots in Figures A2 and A3.

Figures A2 and A3 show that DC is close to one in the vast majority of combinations considered,
with the smallest DC at around 0.7. This is due to the environment and simulator conditions. There
are only four destinations in this environment, with no obstacles to impede agent’s progress, so in
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Figure A3. Occupancy Interquartile range for different distance, desire, and occupancy parameter val-
ues. The combinations used in the error study aremarkedbybluedots. (OIQR = Occupancy Interquartile
Range).

Figure A4. Average bias in each model parameter due to each type of error. Error bars show two
times the standard deviation of bias over 30 repetitions of adding errors to perfect data. Parameter
combinations are shown in the format βocc , βdist , βdes.
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Figure A5. Average normalised predictive power of the choice model for all combinations with each
type error. Error bars show two times the standard deviation of predictive power over 30 repetitions of
adding errors to perfect data. Parameter combinations are shown in the format βocc , βdist , βdes.

Figure A6. Average difference in median erroneous KS values and median perfect KS values for desti-
nation coverage and occupancy interquartile range for every parameter combination plotted against
each error type. An example of when the summary statistic distributions change significantly (a)
and minimally (b) are shown to illustrate the kinds of differences seen between distributions. Error
bars show two times the standard deviation of RMKS over 30 repetitions of adding errors to perfect
data. Parameter combinations are shown in the format βocc , βdist , βdes. (DC = Destination Coverage,
OIQR = Occupancy Interquartile Range).
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10,000 timesteps, the vast majority of agents are able to visit all four destinations, except in extreme
cases. These extreme cases occur when the distance parameter is large, occupancy parameter is large
and positive, and desire parameter is small. In these situations, agents will be driven to visit either
the destinations at opposite vertices only (distance parameter positive) or destinations at either of
the neighbouring vertices (distance parameter negative), since the square configuration means two
destinations are comparable in distance, with the other being further away. The positive occupancy
parameter means agents will be drawn to the busier destinations. These two effects together mean
that it is likely that not all destinationswill be visited by all agents. These results, combinedwith those
in the main text, show that though the environment and initial simulation conditions used strongly
influence the values of the two summary statistics, a wide range of behaviours can be captured.

Figure A4 shows the bias in each parameter estimate with each type of error for the empty room
and can be compared to Figure 6 in the main text. First, notice that occupancy errors have a neg-
ligible effect on the distance parameter and vice-versa, as seen in the main text, though there are
significant differences in the trend of occupancy bias with distance error across combinations. This
reinforces the notion that these two predictors are independent of each other and this does not
depend toomuch on environment. Another result shared by both environments is that distance and
occupancy errors cause downward bias in their associated parameters, confirming the results of pre-
vious work (Bhatta and Larsen 2011; Jang, Rasouli, and Timmermans 2017). Both environments also
show a small downward bias in desire parameter with both distance and occupancy errors, though
this ismore pronounced for the empty room. This shows that there is some correlation betweendesir-
ability and the other predictors that is only partially explained by the environment and the initial
simulator conditions, such as the initial schedules of agents.

Sequence errors have the greatest impact on estimate bias with occupancy and desire parameters
obtaining an almost equal and opposite value from their original estimates. The effect on distance
parameter is the most interesting – all combinations show a parabolic relationship in estimate bias
with sequence error, with a minimum at around sequence error = 60%. This implies that the effect
of distance is actually recovered when over half the chosen destinations are altered. Two effects
contribute to this: the destination layout and the new next destination constraint in destination sub-
stitutions. There are only four destinations, and for any one destination, there are two of which are
equidistant and one which is further away. The new next destination constraint means that there are
at most only two possible destinations that can be substituted, as the destination must be different
from the current one, and cannot be the same as the destinations before and after it, if all these are
different, then there is only one destination that can be substituted, if the destinations before and
after are the same, then there are two possible substitutions. In the case where distance is strongly
negative, the previous and subsequent destinations are likely to be one of the closer destinations, if
they are distinct (the agent is moving around the square), then the only possible destination that can
be substituted is the one further away, otherwise, the further one has a 50% chance of being substi-
tuted. In the casewhere distance parameter is strongly positive, then it is likely that both the previous
and subsequent destinations are the one furthest from the current destination, so it is likely that this
destination will be substituted for one of the closer ones. These effects are reduced in asymmetric
environments with more destinations, as can be seen in the main text.

Figure A5 shows the predictive power for the empty room in analogy with Figure 7 in the main
text. As for the environment in themain text, the predictive power consistently decreases as distance
andoccupancy error increase for all non-zeroparameter combinations, as expected. (0, 0, 0), however,
seems relatively unchanged with distance or occupancy errors, with large variance obfuscating any
clear trends. Thismakes sense, as adding randomnoise to an already randommodel will not have any
impact on the accuracy of suchpredictions.With sequence errors, there is a clear parabolic effect, with
aminimumat sequence error = 60%. This shows that a newdata structure emergeswhen themajor-
ity of destinations are altered by substitution which satisfies the new next destination constraint. In
tandem with the sequence error biases, this data is best fit by a model with occupancy and desire
parameters with similar magnitudes but opposite signs to the original and the same distance param-
eter value. It could be argued that (0, 0, 0) follows the rest of the combinations for high sequence error,
this too supports the idea that a new, non-random structure is emerging in the sequences which can
be explained by a non-randommodel.
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The RMKS for the empty room for each summary statistic and error type are shown in Figure A6,
along with representative examples of how similar and different the estimated summary statistic
distributions are compared to the originals. This figure is analogous to Figure 8 in the main text.

The RMKS for both summary statistics are not greatly affected by distance errors, though the exact
trend in RMKS depends largely on the parameters considered. It is interesting that OIQR RMKS (−4,
4, 4) becomes slightly negative with distance errors, indicating that the resultant summary statistic
distributions actually become more similar to the original summary statistic distribution than the
distribution obtained using estimates from non-erroneous data.

Occupancy errors also have little effect on the RMKS for both summary statistics for all combina-
tions. However, it could be argued that (−2, −1, 1) OIQR RMKS increases, but the large error bars
indicate large variation, showing that this may not be a significant effect. This is supported by Figure
A6a, which shows that the overall shape of the distribution does not change much with occupancy
error, but the height of the peaks varies and the amount bywhich each peak changes depends on the
error value considered. This suggests that occupancy errors do not affect the calibration of themodel
substantially enough to result in different dynamics in most cases, as measured by DC and OIQR.

As with the horseshoe, sequence errors have the most dramatic effect on RMKS for both sum-
mary statistics,witheachcombination considered showinguniquebehaviour inoneorboth summary
statistics. (0,0,0) demonstrates little change inOIQR RMKS and for DC RMKS up to 60%error. However,
beyond this, DC RMKS begins to increase, indicating that the dynamics are changing in a system-
atic way that is not captured by the random model, lending further credence to the idea that a new
data structure is created from the sequence errors. (3, 2, 1), (3, 3, 1), and (4, −4, 1) all show oscillatory
behaviour in at least one RMKS plot. This is despite the significant change in parameter estimates
as sequence error increases (see Figure A4), showing that different model parameters can produce
similar dynamics in this environment, as measured by DC and OIQR. Despite having almost identi-
cal parameter values, (3, 2, 1) and (3, 3, 1) show quite distinct trends in each RMKS plot. This would
indicate that the summary statistics can be very sensitive to small changes in parameter values. The
OIQR RMKS of combination (4, −4, 1) rises quickly before plateauing after sequence errors > 20%.
This can be explained by Figure A6b, which shows that OIQR distributions become very similar for
> 20% error, peaking at lower OIQR and showing a decreased spread of possible values. This could
also be the case for theDC RMKS for (3,−3, 2), which shows similar behaviour. These results show that
the extent to which the dynamics of the calibratedmodel is altered compared to the original dynam-
ics due to sequence errors is incredibly varied and depends in part on the original parameter values
and the summary statistics used to specify the dynamical space. A similar diversity of RMKS trends is
seen for the horseshoe environment, indicating that the environmentmay not be an important factor
when assessing the change in dynamics due to errors.

Appendix B. Summary statistic distributions

This appendix demonstrates how the distributions of both summary statistics, destination cover-
age (DC) and occupancy interquartile range (OIQR), from simulations run using the choice model
described in Equation (1) can vary when estimated on data containing differing amounts of error.
These distributions come from one of the 10 error study replicates completed on the horseshoe
environment (Figure 2). The differences between these distributions underpin the relative median
Kolmogorov-Smirnov (RMKS) results shown in Figure 8.
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Figure B1. The occupancy interquartile range (OIQR) distribution from the original model parameter
values vs the distributions for the estimates obtained from the unaltered data and from the data with
different amounts of distance error added for one error study replicate.

Figure B2. The occupancy interquartile range (OIQR) distribution from the original model parameter
values vs the distributions for the estimates obtained from the unaltered data and from the data with
different amounts of occupancy error added for one error study replicate
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Figure B3. The occupancy interquartile range (OIQR) distribution from the original model parameter
values vs the distributions for the estimates obtained from the unaltered data and from the data with
different amounts of sequence error added for one error study replicate.

Figure B4. The destination coverage (DC) distribution from the original model parameter values vs
the distributions for the estimates obtained from the unaltered data and from the data with different
amounts of distance error added for one error study replicate.
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Figure B5. The destination coverage (DC) distribution from the original model parameter values vs
the distributions for the estimates obtained from the unaltered data and from the data with different
amounts of occupancy error added for one error study replicate.

Figure B6. The destination coverage (DC) distribution from the original model parameter values vs
the distributions for the estimates obtained from the unaltered data and from the data with different
amounts of sequence error added for one error study replicate.
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Appendix C. Distance and occupancy error distributions

This appendix illustrates how the sampling distributions of both occupancy and distance errors
change when their associated parameters change. As explained in Section 2.3.1, the occupancy and
distance errors are sampled from a binomial distribution with parametersm and p, and a log-normal
distribution with parameters ν and γ , respectively.

Figure C1 shows how the shape of the sampling distribution for occupancy errors changes with
both error value (1− p) and true occupancy. As mentioned in Section 2.3.1, the true occupancy is set
to the mean and by using the error value, m can be calculated. Table C1 shows the values of each
parameter for each true occupancy value.

From Figure C1, it is clear that the spread of possible occupancy values increases with both the
error value and the true occupancy. This reflects the fact that it is harder to get an accurate count
when there are large numbers of people in an area.

Figure C2 shows how the shape of the sampling error distribution changes with both the true dis-
tancemeasured in the simulation and the error value, γ . Asmentioned in themain text, ν is calculated
by setting themodeof the distribution as the true distance and solving for ν using the different values
of γ . Table C2 shows the values of each parameter for each true distance value.

Figure C2 shows that, in analogy with occupancy errors, the spread of possible distance values
increases with both true distance and γ . This reflects that some distance-measuring instruments
become less accurate as the measured distance increases, e.g. (n.d.a; n.d.b; Venkatnarayan and
Shahzad 2019).

Figure C1. The destination coverage (DC) distribution from the original model parameter values vs
the distributions for the estimates obtained from the unaltered data and from the data with different
amounts of sequence error added for one error study replicate.
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Figure C2. The destination coverage (DC) distribution from the original model parameter values vs
the distributions for the estimates obtained from the unaltered data and from the data with different
amounts of occupancy error added for one error study replicate.

Table C1. Occupancy error distribution parameter values with
true occupancy values and occupancy error values shown in
Figure C1.

True Occupancy m 3 s.f. Occupancy error 3 s.f. p 4 d.p.

5 5 0.0675 1.0000
10 11 0.0675 0.9091
15 16 0.0675 0.9375
20 21 0.0675 0.9524
5 6 0.125 0.8331
10 11 0.125 0.9091
15 17 0.125 0.8824
20 23 0.125 0.8170
5 7 0.250 0.7143
10 13 0.250 0.7692
15 20 0.250 0.7500
20 27 0.250 0.7407
5 8 0.375 0.6250
10 16 0.375 0.6250
15 24 0.375 0.6250
20 32 0.375 0.6250
5 10 0.500 0.5000
10 20 0.500 0.5000
15 30 0.500 0.5000
20 40 0.500 0.5000
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Table C2. Distance error distribution
parameter values with true distance
values and distance error values shown
in Figure C2.

True Distance / dm ν 3 s.f. σ 2 d.p.

60 4.10 0.05
100 4.61 0.05
140 4.94 0.05
180 5.20 0.05
60 4.10 0.10
100 4.62 0.10
140 4.95 0.10
180 5.20 0.10
60 4.11 0.15
100 4.63 0.15
140 4.96 0.15
180 5.22 0.15
60 4.13 0.20
100 4.65 0.20
140 4.98 0.20
180 5.23 0.20
60 4.16 0.25
100 4.67 0.25
140 5.00 0.25
180 5.26 0.25

Appendix D. Combined error study RMKS

Figure D1. Heatmaps of the average OIQR RMKS for (1, −1, 4) over five error study replicates against
both occupancy and sequence errors at constant distance errors.
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Figure D2. Heatmaps of the average OIQR RMKS for (−1,−4, 1) over five error study replicates against
both occupancy and sequence errors at constant distance errors.
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Figure D3. Heatmaps of the average OIQR RMKS for (−2,−1, 1) over five error study replicates against
both occupancy and sequence errors at constant distance errors.
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Figure D4. Heatmaps of the average DC RMKS for (1,−1, 4) over five error study replicates against both
occupancy and sequence errors at constant distance errors.
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Figure D5. Heatmaps of the average DC RMKS for (−1, −4, 1) over five error study replicates against
both occupancy and sequence errors at constant distance errors.
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Figure D6. Heatmaps of the average DC RMKS for (−2, −1, 1) over five error study replicates against
both occupancy and sequence errors at constant distance errors.
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