
                          King, C. J., & Bode, N. W. F. (2022). A virtual experiment on
pedestrian destination choice: the role of schedules, the environment
and behavioural categories. Royal Society Open Science, 9(7),
[211982]. https://doi.org/10.1098/rsos.211982

Publisher's PDF, also known as Version of record
License (if available):
CC BY
Link to published version (if available):
10.1098/rsos.211982

Link to publication record in Explore Bristol Research
PDF-document

This is the final published version of the article (version of record). It first appeared online via The Royal Society
at https://doi.org/10.1098/rsos.211982 .Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the
published version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/

https://doi.org/10.1098/rsos.211982
https://doi.org/10.1098/rsos.211982
https://research-information.bris.ac.uk/en/publications/13d4d8cf-e9a7-480f-9855-4e5ecd209bc9
https://research-information.bris.ac.uk/en/publications/13d4d8cf-e9a7-480f-9855-4e5ecd209bc9


 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

24
 A

ug
us

t 2
02

2 
royalsocietypublishing.org/journal/rsos
Research
Cite this article: King C, Bode NWF. 2022 A
virtual experiment on pedestrian destination

choice: the role of schedules, the environment

and behavioural categories. R. Soc. Open Sci. 9:
211982.

https://doi.org/10.1098/rsos.211982
Received: 17 December 2021

Accepted: 7 July 2022
Subject Category:
Computer science and artificial intelligence

Subject Areas:
computer modelling and simulation/human-

computer interaction

Keywords:
virtual experiment, pedestrian dynamics,

destination choice, statistical model calibration
Authors for correspondence:
Christopher King

e-mail: christopher.king@bristol.ac.uk

N. W. F. Bode

e-mail: nikolai.bode@bristol.ac.uk
© 2022 The Authors. Published by the Royal Society under the terms of the Creative
Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits
unrestricted use, provided the original author and source are credited.
Electronic supplementary material is available

online at https://doi.org/10.6084/m9.figshare.c.

6098685.
A virtual experiment on
pedestrian destination
choice: the role of schedules,
the environment and
behavioural categories
Christopher King and N. W. F. Bode

Department of Engineering Mathematics, University of Bristol, University Walk,
Ada Lovelace Building, Bristol BS8 1TW, UK

CK, 0000-0002-3172-2941; NWFB, 0000-0003-0958-5191

Which locations pedestrians decide to visit and in what
order drives circulation patterns in pedestrian infrastructure.
Destination choice is understood to arise from individuals
trading off different factors, such as the proximity and
busyness of destinations. Here, a virtual experiment is used
to investigate whether this behaviour depends on the layout
of buildings, whether planned or imposed destination
schedules influence decisions and whether it is possible to
distinguish different choice behaviour strategies in pedestrian
populations. Findings suggest that virtual experiments can
consistently elicit a range of destination choice behaviours
indicating the flexibility of this experimental paradigm. The
experimental approach facilitates changing the environment
layout while controlling for other factors and illustrates this
in itself can be important in determining destination choice.
Destination schedules are found to be relevant both when
imposed or generated by individuals, but adherence to them
varies across individuals and depends on prevailing
environmental conditions, such as destination busyness.
Different destination choice behaviour strategies can be
identified, but their properties are sensitive to the detection
methods used, and it is suggested such behaviour
classification should be informed by specific use-cases. It is
suggested that these contributions present useful starting
points for future research into pedestrian destination choice.
1. Introduction
Pedestrian destination choice describes the behavioural process by
which people decide on the locations they would like to walk to
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and in what order. It has been described as a strategic level process, distinguished from tactical level
processes, such as route choice, and operational level processes, such as collision avoidance [1].
Adopting the formalism of transportation, it could be described as the mechanism by which origin–
destination matrices are formed and potentially change over time. Thus, pedestrian destination choice
is immediately relevant for pedestrian flow in buildings, event sites and cities, making it crucial for
understanding pedestrian traffic.

The broad mechanism for pedestrian destination choice is considered to be based on individuals
trading off different factors against each other when making decisions (e.g. [1–3]). For example,
pedestrians who seek to complete an activity at a destination quickly may want to avoid busy
destinations, and, to minimize their effort, they may generally prefer nearby destinations. Research on
this topic is therefore concerned with determining which factors are relevant and how important they
are in determining the destination choices of individuals. The two predominant types of evidence used
are surveys and direct observations. Surveys, in which individuals state their choices retrospectively or
state their intentions, have been used as a means to investigate the choice behaviour of pedestrians for
the last couple of decades (e.g. [4–8]). The motivation for these studies is primarily economic,
investigating contexts such as shopping or tourist movement behaviour. Direct observation relies on
recording the movement of many individuals using dedicated active sensing, such as mobile phone
applets [9], or passive sensing, such as recording the physical location of portable devices using Wi-Fi
signals (e.g. [2,10]). While their usefulness is evident, both data collection approaches have drawbacks.
For example, surveys either rely on the memory of individuals or hypothetical situations, and in direct
observations, it can be challenging during busy periods, where crowd densities are high, and movement
speeds are slower, on average, to determine whether individuals are visiting a destination or are simply
passing through it. An alternative and comparatively infrequently used approach to obtain evidence on
pedestrian destination choice is controlled virtual experiments where individuals interact with a
carefully controlled simulated environment. While the ecological validity of such experiments needs to
be examined carefully [11], the fact that the information provided to participants can be controlled
precisely makes it possible to directly investigate aspects of pedestrian destination choice that are
difficult to manipulate in stated choice surveys or direct observations.

A ubiquitous feature in pedestrian destination choice research is the intrinsic motivation of
pedestrians to visit a destination. Itineraries or schedules capture an order of ‘priority’ for activities
pedestrians want to complete at different destinations [12], and they thus influence their destination
choice behaviour. The desirability of destination has been investigated in different ways, notably in
market research [13,14]. Sigmoid functions have been used to express the preferences of individuals
for destinations [15], and features of buildings [2,16] or the number of transitions between destinations
[17] have been used to estimate such preferences. In this contribution, a virtual experiment is used to
explore how schedules influence destination choice and if there is a difference between imposed
schedules and ones created by individuals.

There are two broad and related methodological questions that need to be considered in pedestrian
destination choice research. The first question is concerned with the extent to which destination choice
behaviour can be generalized. For example, if data are recorded in one building, to what extent can
the findings be applied to another building. To the best of the authors’ knowledge, no work
quantitatively investigating the potential differences in choice behaviour has been attempted to date.
Related to the first question, the second question is concerned with the extent to which people exhibit
different behaviour in surveys or laboratory experiments than in reality (i.e. this evidence lacks
‘ecological validity’). Previous work investigating and quantifying potential differences in participant
behaviour due to different data collection methods has been studied in the field of economics [18,19].
Mahmassani & Jou [19] compare commuter travel behaviour from a hypothetical scenario presented
in a laboratory with travel diaries collected in a field study. They fit a route choice model to data
from each collection method and find that the models contain the same parameters, and each
parameter has the same sign; however, the actual estimated values were different. Other studies
investigate the effect of the data collection method on participant behaviour, but while they compare
the advantages and disadvantages of different data collection methods, no quantitative effects are
measured (e.g. [20]). Here, the flexibility virtual experiments offer is used to measure how differences
in the environment (building layout) and in the way information is presented change choice
behaviour. Therefore, this work takes exploratory steps to address the questions above in the context
of pedestrian destination choice behaviour.

It has been suggested that in many contexts, people can be separated into distinct groups according to
the behaviours they display, including movement patterns [4,5,21–24], activity patterns [25–27] and
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mentality [6,7,28]. Clustering procedures either make use of author-defined summary statistics of the
data [5,24,26], or use algorithms, such as unsupervised machine learning [22,23,28], spatial density
methods [4,21] and sequence alignment [25,27], based on features of the quantities measured.
Currently, statistical model calibration is used to fit and explain the data collected using a specified
model. To the best of the author’s knowledge, no clustering based on model calibration has been
attempted. This paper therefore attempts to demonstrate a new application of statistical model
calibration through cluster individuals based on the destination choice behaviour.

To summarize, the following questions are answered and formally assessed through hypothesis tests:

1) Do people use a mental schedule of destinations that they plan to visit?
2) Do people make different decisions if they are recommended an order to visit destinations, compared

with choosing their own?
3) Does the layout of the environment influence pedestrian destination choice behaviour?

While initial results are provided for the following questions, which are also further discussed in §4:

i) Can a virtual experiment elicit consistent destination choice behaviour regarding how distance
and occupancy affect the destination choices made by people?

ii) If schedules are used, how strictly do people follow them?
iii) Does the way in which information is presented affect peoples’ choices?
iv) Can people be categorized in terms of their choice behaviour through model calibration? If so,

how does it compare with clustering through traditional methods?

The remainder of this manuscript is structured as follows. Section 2 discusses the experimental design
(§2.1), the recruitment methods used (§2.2) and subsequent data analysis (§2.3.1), including data
clustering methods (§2.3.2). Results are presented in §3, including characteristics of the participant
samples (§3.1), model estimation (§3.2) and participant clustering (§3.3). The implications of the
results, along with ideas for future work are discussed in §4.

2. Methodology
2.1. Experimental design
In the virtual experiment, participants were tasked with choosing a sequence of destinations within a
fixed time period. Instead of explicitly simulating the movement of individuals, participants were
asked to choose destinations consecutively with their positions and remaining time being updated
instantaneously between decisions.

Three different virtual environments and visualizations were employed and these are shown in
figure 1. Each environment has six destinations, distinguished by letters A–F. Figure 1a shows the
’open environment’, where there is an open space between destinations, making it is easy to move
between any two destinations. Figure 1b represents the ‘closed environment’, where movement
between destinations is restricted by passageways. The final environment in figure 1c was visualized
differently to the preceding environments. Instead of showing an abstracted top-down view, it shows
a real-world representation of an environment similar to the open environment. Here, information on
each destination is shown through photographs taken from a first-person perspective. For clarity, a
diagram illustrating the points-of-view of the photographs accompanies them. The images displayed
during the photo survey questions are shown in appendix D. Sample screenshots of the different
stages of each experimental condition are provided in appendix C.

The experiment was conducted online using an online survey platform1 which allowed for response-
based routing. All experimental conditions shared the same basic structure. First, the purpose of the
experiment was explained (see figure 6). Second, participants had to consent to taking part in the
research (figure 7). If the participant did not agree to take part, then they were taken to a final page
which again gave them the opportunity to take part in case they changed their mind. If the
participant agreed, then they were asked for some basic information: their age, their gender/sex and
the kind of environment they lived in (for details see §3.1). These questions were optional and were
included to ascertain how representative of the general population the sample of participants was.
Investigating the possible effects of these demographic measures was not a main interest of this work,
1www.onlinesurveys.ac.uk, accessed on 19 July 2021.

http://www.onlinesurveys.ac.uk
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Figure 1. The different virtual environments used: the open environment (a), the closed environment (b) and the open
environment with information about destinations given in the form of first-person photographs (c). A map of the environment
showing the position and perspective of the photo is also provided. These images are presented to participants at the start of
the experiment.

royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.9:211982
4

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

24
 A

ug
us

t 2
02

2 
and the explanatory power of measures, such as self-reported gender or age, can be compounded by
other factors. Next, participants were provided with instructions and information about the task. Each
experimental condition was designed to take 3–4 min to complete. The schedule chosen condition
type was estimated to take a little longer to complete than the others, due to the additional task of
creating a schedule of destinations to visit. Ethics approval for the experiment was obtained from the
Faculty Research Ethics Committee in Engineering at the University of Bristol.

In each experimental condition, the participants had to complete the same basic task—conduct a five-
destination trip in the displayed environment within a set hypothetical time. The trip consists of up to five
choices of destination made by participants using information available in an accompanying image of the
environment. The image displayed shows the participant their current location, the locations of other
destinations and the occupancy of other destinations. The current location of a participant in the
environment is either the initial position if the participant is starting their trip, or the destination which
they decided to visit in their previous choice. The environmental layout gives participants a rough idea
of the relative distance between destinations. Occupancy of destinations is represented by blue circles,
with each circle representing an individual using the destination. The experiment ended either when
participants ran out of hypothetical time or when they had selected a sequence of five destinations. In
either case, the choices they made were recorded and used in subsequent analyses.

A hypothetical time limit is employed to provide realistic consequences for participants choosing
busy and/or further away destinations. For the photo condition, the hypothetical time limit for
completing the trip is 15 min, which was chosen as a realistic time to move in the environment and
visit five destinations. For the other experimental conditions, the hypothetical time limit was
arbitrarily chosen to be 60 min, as the environment images give no sense of spatial scale. When
participants made a choice, the hypothetical time limit was reduced by a given amount according to
the destination chosen. The hypothetical time elapsed depends on both the distance of the chosen
destination from the participant’s current position and the occupancy of the destinations using the
following relation:

Ti(j) ¼ wd(j)di,j þ wooi,j þ 1, ð2:1Þ

where Ti( j) is the time elapsed from the outcome of the jth choice being destination i from the set of
all other destinations not previously visited. di,j is the distance between the participant’s current
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position and i. This distance is measured in arbitrary units and is arbitrarily scaled such
that di,j [ Z, di,j [ [0,10]. The value of di,j is chosen based on the environment layout, if two
destinations are further apart in the image, then the distance between them is higher. The distances
for the photo and open environments are equal, but the distances for the closed environment are
different from these, due to the different environment layout. oi,j is the current occupancy of i, the
total number of people present at destination i, at the time of the jth choice, such that oi,j [ Z, oi,j . 0.
For the open and closed environments, the occupancy of each destination changes each time a choice
is made, and these changes in occupancies were set by the experimenters to ensure a representative
range of occupancies for each destination (see appendix A for details). However, the virtual
environment is not simulated dynamically, meaning that if two participants make the same sequence
of decisions, they see exactly the same destination occupancy. These systematic changes in occupancy
were used due to limitations in survey implementation. For the photo condition, destination
occupancy is determined from the number of people present at each destination and so does not
change over each choice. The occupancy of all destinations for each environment is shown in
appendix A. wd and wo are constants which weight the influence of distance and occupancy on Ti,
respectively, wd,wo [ R, wd,wo . 0. Values of wd and wo are shown for each environment in appendix
B and are chosen such that the number of possible chosen destination combinations for each
experimental condition is implemented on the online survey platform manageably while still
being reasonably large. Participants are not aware of equation (2.1), only that choosing
destinations that are further away and/or are busier will cause more time to elapse. e � N(m,s2), the
parameters depend on which environment is used. This adds random noise to the otherwise
deterministic relationship to prevent any participants from working out the relationship between Ti, di
and oi. For the photo environment, e∼N(1.5, 0.75), the other environments use e∼N(0, 2). This is
because the total time and elapsed times in the photo environment are much smaller than in the
other environments and using these distributions prevents Ti < 0. Importantly, as the virtual
environments are not simulated dynamically, as mentioned above, the remaining times for each
possible participant trajectory are only computed once and then used throughout the experiment and
for all participants. The time remaining after making each choice is shown to participants when they
make their next choice. If participants run out of hypothetical time before making five choices, then
the experiment ends by telling the participants that they have run out of time and have had to cut
their trip short.

For all experimental conditions, participants were not allowed to re-visit destinations. The reason for
this is that in most real situations pedestrians will rarely visit the same destination twice in one trip. They
may pass through the destination in order to visit other destinations, but this does not count as a choice
to visit the transient destination (e.g. in the closed environment).

In the schedule chosen condition, participants were asked to plan a sequence of destinations to visit
based on the environmental layout and starting position alone. Participants were shown the open
environment without other people present and asked to choose which destination they planned to
visit first, then the second and so on, until a schedule of five unique destinations was chosen. They
were then presented with the populated environment and asked to choose their destinations in the
same way as the other experimental conditions.

In the schedule given condition, a suggested sequence of destinations to visit is given in the initial
information before participants make any choices. The suggested schedule was chosen to be ‘DEBAC’,
which did not minimize or maximize the total distance travelled or the occupancy of chosen
destinations. However, if participants chose to follow this sequence, then they would run out of
hypothetical time.

The photo experimental condition uses photographs of an outdoor flea market in Bristol, UK, which
took place on Saturday 19 June 2021. The photos were taken by the authors between 14.30 and 15.30.
This environment was chosen as it closely resembled the open environment (figure 1a) in terms
of layout and destination positions. Destinations were chosen to be stalls positioned on each side of
the street that were clearly visible from the initial position. It also allowed occupancies of each
destination to be seen from every other destination, allowing participants to use occupancy
information in their decisions. First, a photo was taken from an initial position starting at one end of
the street, corresponding to the initial position in the open environment condition. Then, photos were
taken from the location of each destination, giving views of each other destination. This allowed
participants to choose their next destination from their current destination using information from all
other destinations. To help participants understand from what perspectives each photo was taken, the
photos were numbered, and a diagram is shown alongside the photos, with numbered arrows
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pointing along the rough line-of-sight of each photo taken. The diagram also shows the participant’s
current location in the environment.

In order to address our research questions, five different experimental conditions were considered:

1) Base case—this acts as the reference case for comparison. It uses the open environment shown in
figure 1a and does not involve schedules.

2) Schedule chosen—before choosing which destinations to visit, participants are required to create a
schedule of the destinations they would like to visit and in what order.

3) Schedule given—participants are provided with a suggested order of destinations to visit in the
environment.

4) Closed environment—the environment used is that shown in figure 1b.
5) Photo—the information on each destination in the environment is provided by photos taken from a

human observer’s perspective (figure 1c).

2.2. Participant recruitment
To recruit participants, the authors posted messages on various social media, such as LinkedIn and
ResearchGate2 advertising the experiment, along with messages within their own personal and
professional networks. Additionally, participants were recruited from within the University of Bristol
by use of internal mailing lists. No remuneration was provided to participants, as each version of the
survey took only a couple of minutes to complete. The participant recruitment was designed to reach
a large audience that may be sympathetic to contribution to research without remuneration.

The recruitment messages contained a link to a landing page. When opened, this page contained a
link that randomly selected one of the five experimental conditions when clicked. Participants then
worked through the experiment task, either successfully or unsuccessfully completing it within the set
time. If a participant was unsuccessful, then they had the option to re-take the experiment by clicking
a link. This option was added based on feedback from the experiment prototypes. The link took them
to a copy of their original experimental condition, where data was recorded and stored separately to
distinguish it from their first attempt. Regardless of whether a participant was successful in
completing the task, an invitation to take part in another experimental condition was provided at the
end. This invitation contained a link to a second landing page, identical to the one linked in the
original recruitment message. As for the first landing page, participants were randomly allocated one
of the five experimental conditions. However, this landing page linked to copies of the five
experimental conditions, where data was recorded separately from the first attempts. Each respondent
was assigned only one experimental condition for each attempt. This separation procedure was
implemented to help account for the learning effect from participants taking part more than once,
seeing that for privacy the identity of participants was not recorded.

Before data collection commenced, criteria for terminating data collection were set. It was decided
that the minimum number of first attempts needed would be 10 for each experimental condition (50
people in total) and the maximum number would be around 150 per experimental condition (750
total). Data collection was scheduled to take place over eight weeks, or until the maximum number of
participants was reached, whichever came first. The experiment was released on 9 July 2021 and was
closed on 20 July due to a high response rate.

2.3. Choice model
In order to quantify the choices made by participants, a discrete choice modelling framework is used.
Discrete choice models are used to estimate the probability of an entity making a choice from a set of
distinct, mutually exclusive alternatives [29]. The standard multi-nomial logit model is used, as it is
capable of describing a sufficiently broad range of behaviours,

Pi ¼ eUi

P
j [C e

Uj
, ð2:2Þ

where Pi is the probability of choosing alternative i from the set of all possible alternatives, C, with the
denominator acting as a normalization constant. Ui is the utility of alternative i. This quantifies the
2www.linkedin.com and www.researchgate.net, both accessed on 19 July 2021.

http://www.linkedin.com
http://www.researchgate.net
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amount gained by the participant by choosing destination i and is a function of information available to
participants in our virtual experiment.

The utility for the base case, closed environment and photo experimental conditions is a linear
function as follows:

Ui ¼ bocc bni þ bdist
bdi, ð2:3Þ

where bni is the normalized occupancy of destination i at the time the decision is made and bdi is the
normalized distance to destination i from the participant’s current position. bocc and bdist are the
parameters corresponding to the two predictors. The two predictors are normalized for each decision
to between zero and one by dividing each value by the maximum observed value of that predictor at
that decision time. This sets a limit for the maximal contribution of each predictor and thus ensures
that parameters capture the relative strength of the effects predictors have.

The schedule chosen and schedule given conditions required an additional term to Ui, bdesbqi, where bqi
is a normalized measure of desire to visit a destination i by the participant (defined in more detail below).
This is weighted by parameter, bdes.

Both bocc and bdist can take positive and negative values, representing the potential for occupancy and
distance to have an attractive or repulsive effect, respectively. The parameter bdes can only be positive,
because it represents the effect of a participant’s chosen or given destination schedule. Negative
values would mean that a participant does the opposite to their schedule.

Based on previous work [30], desirability is calculated from a schedule of destinations using the
following relation:

qk,l(Sl) ¼ e�pk , ð2:4Þ

where qk,l is the desirability of destination k for participant l, Sl is the schedule of destinations for
participant l. pk denotes the position of k in the schedule of l. Destinations further along the
participant’s schedule are of lower priority than those near the start. If a destination is not in a
participant’s schedule, then it is given a desirability of zero. When a participant chooses a destination,
it is removed from the schedule for all future choices. For illustration suppose, a participant has
destination schedule S = (A, B, C, D, E) and can choose between the six destinations. So
q ¼ (qA, qB, qC, qD, qE, qF) ¼ (e�1, e�2, e�3, e�4, e�5, e�6) are the desirabilities for each destination. If the
participant in the example visits destination A, their schedule after the visit is now S = (B, C, D, E)
and q ¼ (0, e�1, e�2, e�3, e�4, e�5). Due to the requirement that participants cannot choose to visit a
destination that they have previously visited, in practice destination A and therefore qA would not be
considered in future choices.
2.3.1. Data analysis

As mentioned above, data from any additional attempts of the surveys were not analysed as these
versions were only included to give participants a chance to retake the experiment without
consequence on the original data collected. Investigating learning effects directly was not considered,
as there is no way of linking participants between their first or subsequent attempts nor is there a way
of determining which experimental condition they did first.

All data analysis was conducted in the R programming environment [31]. First, the sequence
of destinations chosen by each participant was extracted, along with demographic information.
Frequency distributions of demographic data are reported to assess how representative of
the general population the participant sample was. Once the destination sequences were obtained,
the distances from the participant’s current position and the occupancy of each chosen
destination were extracted, given the environment and the choice number using the tables in
appendix A. These provide the value for bdi and n̂i in equation (2.3). Additionally, for the schedule
chosen and schedule given experimental conditions, the desirability of each destination at each
decision is calculated using the schedule chosen by or given to participants, respectively, as
described in §2.3.

Next, calibration of the choice model given by equation (2.2) on all responses for each experimental
condition is conducted using maximum-likelihood estimation, implemented using the optim function in
the R programming environment [31]. To estimate the variance in parameter estimates obtained in this
way, 95% confidence intervals are calculated via a bootstrap procedure on the recorded data using 10,000
bootstrap samples.
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The parameter estimates are investigated using three hypothesis tests with the following null
hypotheses. These hypotheses address the three main research questions in the introduction:

1) The presence of schedules has no significant effect on the choice behaviour of participants.
2) There is no significant difference in choice behaviour between participants of the schedule chosen and

schedule given conditions.
3) There is no significant difference in choice behaviour between participants of the base case and closed

environment.

To assess hypotheses one and three, permutation tests are performed using the sum-of-square
difference of parameter estimates for the two experimental conditions being compared as the test
statistic. Permutations construct artificial datasets by randomly re-allocating participants between
the two experimental conditions, ensuring that the overall amount of data for each experimental
condition remains the same. The proportion of permutations that produce values of the test statistic
larger than the one observed in the original data for the two experimental conditions is the p-value
for the test. The number of permutations for each test is 10,000. To assess hypothesis two, a
likelihood-ratio test is performed to assess if including the desirability parameter significantly
improves model fit.

2.3.2. Participant clustering

To investigate if different behavioural categories are present in the destination choices of participants in
our experiments, clustering methods to separate individuals into groups with similar behaviours are
implemented. Numerous methods of data clustering exist, each with their own advantages and
disadvantages. To account for this and to demonstrate the importance of methodological choices, two
clustering methods are implemented.

The first clustering method is motivated by the possibility that participants may consider one factor,
such as distance or occupancy, to be more important. To see whether this is the case, the normalized
cumulative distances and occupancies associated with destination choices of each participant for
each experimental condition are calculated. The values of these quantities necessarily increase as the
chosen destination sequence length increases, so for each participant the cumulative quantities are
normalized by dividing by the number of decisions that participant made. The subsequent
distributions are examined for signs of multi-modality. If any distributions show two or more
modes, then it could indicate the presence of distinct strategies that attempt to minimize/maximize
the quantity of interest. A simple way of assigning participants to different clusters is by using
threshold values that are the midpoints between two adjacent modes. The destination choice model
described in equation (2.3) is then calibrated on each cluster separately and the goodness-of-fit of
this clustered model is compared with the model estimated on all participants (aggregate) data
using the Akaike information criterion (AIC) [32]. The AIC for a clustered model is the sum of the
AICs of the models for each cluster.

The second clustering method is hierarchical clustering [33], as implemented using the default
settings of the ‘hclust’ function in R [31]. For the purpose of clustering, the destination choice model is
calibrated separately for each individual participant. The estimated parameters are assumed to reflect
the destination choice behaviour of participants. The Euclidean distance between the parameter
estimates is used for clustering and dendrograms are used to visualize the clustering and to decide on
clusters of participants to be examined further by fitting the destination choice model to data from all
participants included in the cluster. Model calibration on each cluster is performed and compared
with the aggregate model as described above.

2.3.3. Chosen schedule versus chosen sequence comparison

Any differences seen between the schedule of destinations chosen by participants and the actual chosen
destination sequences are also investigated. This will show how closely people follow their schedule
when they carry out their trip and thus gives an indication of the impact of prevailing conditions,
such as destination occupancies, on participant choices.

Quantitative comparison of schedules and chosen sequences is performed using sequence
alignment [34]. The length of the chosen sequence can be shorter than the schedule if the participant
runs out of (hypothetical) time, so a distance metric that takes deletions and/or additions into
account is needed. The simplest distance metric that satisfies these conditions is the Levenshtein
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distance, which counts the number of operations (substitutions, additions and deletions) needed to
convert one string into another.
oyalsocietypublishing.org/journal/rsos
R.Soc.Open
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3. Results
3.1. Sample statistics
A total of 813 people participated across experimental conditions. Thus, the average number of
participants that attempted one experimental condition is 162.6, with the minimum number of
participants being 144 for the photo and maximum being 174 for schedule chosen. The average
number of participants that attempted one or more experimental conditions two or more times is 53,
with the minimum of 49 and the maximum of 57. Of the respondents that chose to repeat their
initially assigned experimental condition, the average is 9.4, with the minimum being 6 and the
maximum being 16. As stated above, all results presented in this paper are based on first attempts only.

An implementation issue for the base case and closed environment meant that demographic
information for participants was not collected, so only demographic information on participants from
the other three experimental conditions is reported here.

The majority of participants were between the ages of 18 and 30 (approx. 62%), followed by between
30 and 50 (approx. 26%) and then between 50 and 70 (approx. 11%), with the lowest being people greater
than 70 (approx. 1%). No one aged 18 and under took part in the experiment. Only one participant did
not answer this question. The estimated average age is 31.9 (3 significant figures (s.f.)) with an estimated
standard deviation of 13.7 (3 s.f.).

The majority of participants stated that they lived in a city (approx. 63%), with the next highest
number living in a town (approx. 22%), followed by those living in villages (approx. 11%), with those
living in hamlets or the countryside giving the lowest proportion (approx. 2%). Only two participants
did not answer this question.

There were more female participants than male participants (approx. 55% female, approx. 43% male).
Around 1% identified as non-binary and only two people did not answer this question at all. No one
answered ‘Other’ for any attempt of any experimental condition.

3.2. Model parameter estimation
The destination choice model described in equations (2.2) and (2.3) was calibrated on the chosen
destination sequences of all participants of each experimental condition separately. That being said,
not all participants could be used for the schedule chosen condition, which used only the first 112
out of 174 responses, as issues with data recording meant later responses (after 11.18 on 19 July 2021)
had to be discarded. The estimates for model parameters for each experimental condition are shown
in figure 2.

Figure 2a shows that the busyness parameter estimates are large and negative for all experimental
conditions, except photo. This indicates that, on average, participants were less likely to visit a busier
destination than a quieter one. The busyness estimate for the closed environment is lower in absolute
value than for the open environment experimental conditions, indicating that occupancy is less
important when there are restrictions in travelling between destinations.

Tables 1–5 present the results of fitting the model described in equations (2.2) and (2.3). As the model
is fitted to each experimental condition separately, there are five separate tables presented here. The
parameter estimates and confidence intervals are also shown in figure 2. To provide a reference AIC
value to assess model fit, the AIC of the random model (where all parameters are fixed at zero) is
also shown. These results show that the destination choice model used provides a better fit to the
data than a random model.

The distance parameter estimates (figure 2b) show that destinations further away from the
participant’s current position are less likely to be chosen, on average. However, the magnitudes of
these estimates are significantly less than those of the occupancy parameter, suggesting that distance
is less important in the average participant’s decision-making process. Again, caution must be taken
when interpreting these results, especially when comparing schedule chosen and schedule given with
the other experimental conditions, as their destination choice model has three parameters rather than
two, and it is the relative contributions of these parameters that matter. Also, the distances in the
closed environment are different from those of the open and photo environments, so this must be
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Figure 2. Estimates of destination choice model parameters, βocc (busyness) (a), βdist (distance) (b) and βdes (desire) (c) for all
experimental conditions. Error bars show 95% bootstrap confidence intervals. These results are also presented in tables 1–5
along with final AIC values for the fitted and random models.

Table 1. Model-fitting information for the base case experimental condition. Confidence intervals are calculated from 10 000
bootstrap replicates. Point estimates and confidence intervals are given to two decimal places. AIC values are calculated from 794
data points and given to four significant figures.

point estimate 95% confidence interval

βocc −3.95 [−4.39, −3.46]
βdist −0.40 [−0.60, −0.20]
fitted AIC 2402

random AIC 2848
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considered when making comparisons. The qualitative observation that participants on average
preferred nearby destinations holds regardless of these considerations.

Figure 2a,b helps answer question (i) in §1, suggesting that virtual experiments such as these can
produce consistent results as to the relationships between destination choice and potential influencing
factors, such as distance and occupancy, at least when these factors are sufficiently controlled.
Fortunately, this is easy to do in virtual experiments.

The photo experimental condition gives a busyness parameter estimate close to zero, indicating that
occupancy plays no significant role in people’s choice of destination when they are presented information



Table 2. Model-fitting information for the schedule chosen experimental condition. Confidence intervals are calculated from
10 000 bootstrap replicates. Point estimates and confidence intervals are given to two decimal places. AIC values are calculated
from 534 data points and given to four significant figures.

point estimate 95% confidence interval

βocc −4.26 [−4.84, −3.59]
βdist −0.54 [−0.77, −0.30]
βdes 1.83 [1.60, 2.05]

fitted AIC 1396

random AIC 1917

Table 3. Model-fitting information for the schedule given experimental condition. Confidence intervals are calculated from
10 000 bootstrap replicates. Point estimates and confidence intervals are given to two decimal places. AIC values are calculated
from 774 data points and given to four significant figures.

point estimate 95% confidence interval

βocc −3.90 [−4.44, −3.30]
βdist −0.73 [−0.97, −0.47]
βdes 1.94 [1.72, 2.13]

fitted AIC 2035

random AIC 2777

Table 4. Model-fitting information for the closed environment experimental condition. Confidence intervals are calculated from
10 000 bootstrap replicates. Point estimates and confidence intervals are given to two decimal places. AIC values are calculated
from 782 data points and given to four significant figures.

point estimate 95% confidence interval

βocc −2.56 [−2.21, −2.79]
βdist −0.63 [−0.78, −0.41]
fitted AIC 2568

random AIC 2805

Table 5. Model-fitting information for the photo experimental condition. Confidence intervals are calculated from 10 000
bootstrap replicates. Point estimates and confidence intervals are given to two decimal places. AIC values are calculated from 657
data points and given to four significant figures.

point estimate 95% confidence interval

βocc −0.03 [−0.25, −0.19]
βdist −0.86 [−1.04, −0.68]
fitted AIC 2298

random AIC 2357
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in this way. Comparing the distance parameter values between the base case and photo environments
show that when destination information is presented as photographs, distance becomes more
important. These results together suggest that changing the way in which information about
destinations is presented to participants can affect their decisions (question (iii) in §1). However,
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Figure 3. Histograms of normalized cumulative quantities over participants were used to cluster participants of the base case (a)
and closed environment (b) experimental conditions. These quantities are normalized by dividing by the number of destinations
chosen by each participant. The red lines show the cluster threshold value for each quantity.
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caution must be taken when making this comparison, as the occupancies for the photo experimental
condition are different from those used in the other experimental conditions.

The models including destination preferences according to a schedule have an additional model
parameter, desirability. Figure 2c shows that, on average, participants are more likely to visit
destinations that were present in their schedule. Comparing the magnitudes of the estimates also
suggest that the effect of schedules is not affected substantially by whether a schedule is suggested to
or chosen by a participant.

The results shown in figure 2 are also used to assess the three hypothesis tests stated in §2.3.1:

1) The presence of schedules has no significant effect on the choice behaviour of participants—rejected at
95% significance (x2(1) ¼ 408 (3 s.f.), p = 1.47 × 10−59, likelihood-ratio test).

2) There is no significant difference in choice behaviour between participants of the schedule chosen and
schedule given conditions—accepted at 95% significance (p = 0.44; permutation tests, n = 10 000
permutations).

3) There is no significant difference in choice behaviour between participants of the base case and closed
environment—rejected at 95% significance (p = 0.0001; permutation tests, n = 10 000 permutations).

The results of hypothesis one answer the first main question in §1, showing that people often create a
mental schedule of the destinations that they visit and that this can be a significant influence on their
destination decisions. Hypothesis two addresses the second main question in §1, indicating that there
is no significant effect on the destination choices people make when being able to choose their own
schedule versus being provided one to follow. Finally, hypothesis three, which answers the final main
question in §1, provides strong evidence that the layout of the environment can have a profound
impact on how people decide which destination to visit next.

3.3. Participant clustering
Examining the distributions of normalized cumulative distances and occupancies of participant’s chosen
destination sequences show that only the cumulative distance in the base case and cumulative occupancy
of the closed environment show signs of potential bi-modality (figure 3). This indicates two possible
groups of people; those that try to minimize this quantity, and those who do not. The distributions for
all other experimental conditions show no multi-modality and are not shown here.

As stated in §2.3.2, the midpoint between the two modes is estimated (shown as a red line in figure 3)
and used as the threshold value for assigning participants into clusters. The destination choice model is



Table 7. Results from clustering closed environment participants by normalized cumulative distance. Parameter estimates are
given to two decimal places.

data size βocc βdist

all 161 −2.56 −0.63
extremal 106 −4.76 −1.14
balanced 55 −0.28 −0.30

Table 6. Results from clustering base case participants by normalized cumulative occupancy. Parameter estimates are given to
two decimal places.

data size βocc βdist

all 166 −3.95 −0.40
considered 88 −2.35 −0.82
travellers 78 −7.09 0.19
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then calibrated on the clustered data for these two experimental conditions. The results of which are
summarized in tables 6 and 7.

Both these tables show that the estimates using all participants lie between the corresponding estimates
for the two clusters, as expected. Table 6 reveals that the two clusters for the base case are of similar size,
with one cluster considering occupancy as detrimental but distance as attractive to destination choice. The
positive distance parameter indicates that these participants would rather visit a faraway destination if that
destination is quiet, therefore, this group is known as ‘travellers’. The other cluster shows a different
strategy, where distance is also detrimental when choosing a destination. This group provides a more
balanced attitude towards these factors, so these individuals are part of the ‘considered’ cluster.

Table 7 shows that for the closed environment there are significantly more participants that try to
avoid busy destinations more than faraway destinations (‘extremal’). The ‘balanced’ group shows
participants who consider occupancy and distance equally when choosing their next destination. The
differences in the two tables support the idea that people adopt different choice strategies depending
on the layout of the environment.

TheAIC for the clustereddata is comparedwith themodel calibrated on the aggregated data. For the base
case, for the clustered data AIC = 2271 (4 s.f.), and for the aggregated data AIC = 2403 (4 s.f.). For the closed
environment, for the clustered data AIC = 2447 (4 s.f.), and for the aggregated data AIC = 2569 (4 s.f.).

Based on hierarchical clustering, only the closed environment (figure 4b) shows clear clusters of
participants. The remaining experimental conditions give rise to dendrograms similar to that of the
base case (figure 4a), where the majority of participants are placed into relatively similar clusters, with
a few outlying participants.

For the closed environment, some participants are also distinct from the majority of others (shown in
brown in figure 4b), but there are also three sizable and distinct clusters when the dendrogram is
truncated at a height of 1.75 (the green, blue and purple branches of figure 4b, representing the
‘averse’, ‘avoidant’ and ‘relative ambivalence’ clusters, respectively). As for the other clustering
method, the destination choice model is calibrated on each cluster separately. The results are
summarized in table 8. The parameter estimates suggest that participants in each identified cluster
prioritize visiting less busy destinations, but to differing extents. These results are quite different from
those produced by qualitative clustering in table 7, illustrating the difficulty of finding clear groups of
participants and the issues with drawing conclusions based on these groups.

The AIC of this clustered model is also compared with that of the model estimated on all data, in this
case, for the model fitted to clusters, AIC = 2387 (4 s.f.), and for the model fitted to all data, AIC = 2569
(4 s.f.). By comparing these values with those obtained from the closed environment clusters obtained
from the alternative clustering method (see above), it is apparent that clustering through model
calibration is a viable way of categorizing different behaviour patterns. Despite producing different
clusters, the similarity between the AIC values suggests that the two clustering methods described



Table 8. Results from clustering closed environment participants by hierarchical clustering (figure 4b). Parameter estimates are
given to two decimal places.

data size βocc βdist

all 161 −2.56 −0.63
averse 10 −4.91 −1.66
avoidant 75 −16.81 −2.54
relative ambivalence 74 −0.99 −0.18
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Figure 4. Dendrograms of hierarchical clustering of the base case (a) and closed environment (b) experimental condition
participants using hierarchical clustering of parameter estimates for individual participants. Green = ‘averse’, blue = ‘avoidant’,
purple = ‘relative ambivalence’.
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here produce results of similar quality. The fact that both clustered AICs are smaller than the aggregate
AIC indicates that clustering should be attempted in order to obtain a better model fit, with the exact
method being at the analyst’s discretion and likely to depend on context and requirements for model
fitting. This provides an initial answer to question (iv) in §1.

3.4. Planned versus chosen destination sequences
Figure 5 shows the results from comparing the schedule of destinations chosen by participants
before beginning the main experimental task and the actual sequence of chosen destinations
as described in §2.3.3. It shows that most people tend to roughly follow their schedule, with only a
few changes made. However, there is considerable variation in how much people follow their
schedules across participants. Only a few people follow their schedules exactly, indicating that
most participants who took part were willing to adapt their planned destination sequence according
to prevailing environmental conditions, such as destination occupancies. Therefore, in answer to
question (ii) of §1, how strictly a person follows their schedule is dependent on the individual
themselves. There is no tendency, at least in the participants studied, for people to follow or disobey
their schedule.
4. Discussion and future work
This work collects and publishes data on pedestrian destination choice behaviour using a virtual
experiment. A simple destination choice model is calibrated on this data, revealing that people tend to
avoid busier and further away destinations, with busyness being the more influential factor. These
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results are consistent across experimental conditions where information is presented identically, showing
that virtual experiments can elicit consistent behaviour when occupancy and distance are considered
(question (i) in §1). It is also found that the relative importance of these factors can change
significantly with environmental layout and how information is presented to participants (questions
(3) and (iii) in §1), respectively. Evidence that participants in our experiment can be clustered into
different categories according to their behaviour based on model calibration is found and this
produces results of similar quality to traditional methods (question (iv) in §1). Finally, results indicate
that the majority of participants studied were willing to deviate from their chosen schedule given
prevailing environmental conditions (question (ii) in §1).

The first contribution of this work is a demonstration that even a highly abstracted virtual experiment
can elicit consistent destination choice behaviour in human participants. As for all such research, the extent
towhich the behaviours observed also occur in the real world is not clear [11]. Therefore, the specifics of the
destination choice behaviour found should not be over-interpreted. In addition, it is possible that the
restrictions to social contacts related to the COVID-19 pandemic influenced the tendency of participants
to avoid busy destinations in addition to their desire for completing their task within the set time limit.
Nevertheless, the findings from this experiment present useful data for comparison with future studies.

The second contribution is that using the high degree of control afforded by virtual experiments,
it is possible to compare destination choice behaviour across environmental configurations keeping
all other aspects of the experiment and therefore information available to participants the same.
While behaviour does not differ qualitatively in that participants avoid busy and faraway destinations
in both the open and closed environment, there are quantitative differences in parameter estimates,
similar to the results of [19]. This suggests that in applications where the magnitude of destination
choice model parameters is important, model calibration may need to be performed separately for
different environments. While it must be noted that the distances between destinations in the closed
environment are different from those used in the open and photo environments, this was accounted
for as much as possible by normalizing distances.

The difference in occupancies between the photo environment and the open environment makes a
direct comparison of parameter estimates difficult across these experimental conditions. It should be
noted though that the difference in parameter estimates in the photo environment compared with the
other experimental conditions indicates that different destination choice behaviours can be elicited
depending on what information is presented to participants and how it is presented. To explore the
question of the ecological validity of different ways of presenting information more comprehensively
would require a comparison of virtual experiments to real-world behaviour or at least experiments
conducted in real physical environments (see e.g. [35]). This is left to future work and the data
collected here could be used as a starting point for designing such studies.

The third contribution of this work is a demonstration in principle that model calibration can be used
to explore data, in this case by identifying different destination choice behaviour strategies can be present
in pedestrian populations. This would be expected from previous work suggesting that people can be
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distinguished into different activity pattern categories, for example [25–27]. However, the comparison of
different clustering methods in this work also highlights that the exact nature and composition of any
observed behavioural clusters depend on the clustering method used and so caution must be taken
when making any conclusions based on these. Nevertheless, this work has demonstrated a new
method of clustering individual data, representing another alternative clustering method which could
be useful in specific contexts. The most appropriate clustering approach is likely to depend on the
specific context and purpose of the clustering. For example, is the intention to improve prediction
accuracy of models, or to identify groups of pedestrians with specific predefined behaviours related to
how they use a facility, such as a shopping mall or a public transport hub?

Finally, this work shows that a schedule of destinations is likely to influence destination
choice, regardless of whether it is imposed or chosen by participants. There is large variation in
how different a person’s schedule is from their actual chosen sequence of destinations. This suggests
that most people are willing to adapt their schedule based on prevailing environmental conditions, such
as destination occupancy, and as a consequence that inferring underlying schedules from observed
destination sequences would be difficult. Hidden Markov models that have previously been used to
infer behavioural states may provide a methodological starting point to infer schedules (see e.g. [36]).
In how far knowledge of schedules is important for understanding the dynamics of pedestrian facilities
will depend on the context and this presents an interesting topic for future research.

The experimental design could be improved in several ways. Although destination occupancies varied
between successive choices, they did not vary over participants, as could be expected in real situations.
The implementation also limited the size of the environments and the number of choices made by each
participant. These factors could negatively influence the reliability of model calibration, as the parameter
space may not be fully explored. The hypothetical time limit for the task can be expected to encourage
participants to choose destinations closer and/or less busy to save time, which is likely to restrict the kind
of choice behaviour observed. Moreover, the experiment was designed not to depict a specific context,
such as suggesting the task was part of a shopping trip or similar, in order to avoid any context-specific
behaviours. However, informal feedback from some participants indicated that some people imposed their
own context from the environment, which could have influenced the results in unknown ways. Future
work could eliminate this potential source of variation by specifying a context in the participant briefing.
5. Conclusion
In summary, this contribution demonstrates how highly controllable virtual experiments can be used to
contribute to research into pedestrian destination choice. While care should be taken over extrapolating
the specific behaviours observed here to pedestrian behaviour in real settings, the principle of some
findings is directly relevant beyond the specific experimental setting. First, virtual experiments can be
used to elicit different destination choice behaviours suggesting they can be a useful experimental
paradigm. Second, the layout of environments itself can be an important factor determining
destination choice, even if other aspects are controlled for. Third, destination schedules are relevant
when imposed or generated by individuals, but adherence to them varies across individuals and
depending on prevailing environmental conditions, such as how busy destinations are. Fourth,
different destination choice behaviour strategies can be present in pedestrian populations but methods
for detecting them are ideally informed by specific use-cases. These contributions are hoped to present
useful starting points for future research into pedestrian destination choice.
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Appendix A. Distance and occupancy values
See tables 9–12.
Table 9. Distance table for the open and photo environments. The first row represents the distance of each destination from the
participant’s initial position.

current position A B C D E F

start 1 1 5 5 10 10

A 0 5 3 6 8 10

B 5 0 6 4 10 8

C 3 6 0 5 4 6

D 6 4 5 0 6 4

E 8 10 4 6 0 5

F 10 8 6 4 5 0

Table 10. Distance table for the closed environment. The first row represents the distance of each destination from the
participant’s initial position.

current position A B C D E F

start 2 6 3 5 10 10

A 0 6 6 4 9 9

B 6 0 4 4 8 8

C 6 4 0 4 8 8

D 4 4 4 0 5 5

E 9 8 8 5 0 4

F 9 8 8 5 4 0

Table 11. Occupancy table for the open and closed environments.

choice number A B C D E F

1 7 6 6 11 6 3

2 10 5 3 6 2 8

3 3 12 8 3 7 5

4 7 2 11 5 3 13

5 8 9 7 6 9 7

hing.org/journal/rsos
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Table 12. Occupancy table for the photo environment.

current position A B C D E F

start 1 4 4 1 0 1

A 0 3 2 0 2 3

B 0 0 1 0 4 2

C 2 2 0 2 0 2

D 2 4 1 0 6 0

E 2 1 0 4 0 4

F 3 3 2 0 6 0
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Appendix B. Distance and occupancy weights
See tables 13–15.
Table 13. Distance and occupancy weights, wd( j ) and wd( j ), respectively, for the open environment.

choice number, j wd( j ) wo( j )

1 2 1

2 2 1

3 2 1

4 2 2

5 0.5 0.5

Table 15. Distance and occupancy weights, wd( j ) and wd( j ), respectively, for the photo environment.

choice number, j wd (j) wo(j)

1 0.5 0.5

2 0.5 0.5

3 0.25 0.25

4 0.25 0.5

5 0.25 0.5

Table 14. Distance and occupancy weights, wd( j ) and wd( j ), respectively, for the closed environment.

choice number, j wd( j ) wo( j )

1 2 1

2 2 1

3 2 1

4 2 1

5 0.5 0.5

9:211982
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Appendix C. Survey screenshots
This appendix contains screenshots of how participants perceived the schedule chosen survey. This acts
as a representative example for the information presented in the other surveys. Any differences in the
other experimental conditions are discussed in the captions, where appropriate.

See figures 6–15.
Figure 6. Screenshot of the initial introduction used for the surveys. Participants would then be taken to the informed consent
screen shown in figure 7. Actual email addresses have been obfuscated to preserve privacy.

Figure 7. Screenshot of the informed consent used for the surveys. If a participant agreed, then they would continue with the rest
of the survey, going to either the instructions in the form of figure 8. If consent is not given, the survey would end.
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Figure 8. Screenshot of the generic instructions used for all experimental conditions except the photo condition. Continuing would
take the participants to figure 9. The instructions for the photo survey differ slightly, describing how information about the
environment is presented, see below. Also note that the environment displayed here is different from the environment the
participant would be presented later in the survey, i.e. participants of the open environments would be shown the closed
environment here, and vice versa for those under the closed environment condition.
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Figure 9. Screenshot of the specific instructions used for all experimental conditions that were not photo or schedule given. The
schedule given condition also states the schedule of destinations to visit here. The photo survey shows a photograph instead of the
diagram of the environment and the hypothetical time to complete tasks is different, as described in §2.1. Continuing would take
the participants to figure 10 for the schedule chosen condition.
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Figure 10. Screenshot of the first question for the schedule chosen condition. Answering the question would take participants to
the next question, which would be in the form shown in figure 11. In these questions, the environment pictures are not updated
after each submitted answer.
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Figure 11. Screenshot of the general form of subsequent questions when choosing a schedule. Participants would be taken to the
next question of the same form, but with the responses updated. These questions repeat until the full schedule has been chosen. In
these questions, the environment pictures are not updated after each submitted answer. Once the participant has chosen their
schedule, they move on to figure 12.
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Figure 12. Screenshot of the first question for the schedule conditions. Answering the question would take participants to the next
question, which would be in the form shown in figure 13. However, the amount of time remaining, the position of the participant in
the image and the answers available would depend on their answer to this question. For non-schedule conditions, there is no
mention of the schedule in the question text.
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Figure 13. Screenshot of the general form of subsequent questions for the base case and closed conditions. The responses available in
subsequent questions depend on the answers to the previous questions. The image would also update for each question answered. The
schedule chosen and schedule given conditions would have the same question text as in figure 12. If the participant runs out of
hypothetical time, then they are taken to figure 14. Otherwise, the participant proceeds to figure 15 after they answer five questions.

Figure 14. Screenshot of the outcome where participants run out of hypothetical time at any point when answering the preceding
questions.
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Figure 15. Screenshot of the outcome where participants successfully complete the task.
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Appendix D. Images in photo condition
See figures 16–23.
Figure 16. The image was displayed in the broad instructions for the photo condition.

Figure 17. The image was displayed in the specific instructions for the photo condition.

Figure 18. Image in the photo survey when the participant is at destination A.



Figure 19. Image in the photo survey when the participant is at destination B.

Figure 20. Image in the photo survey when the participant is at destination C.
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Figure 22. Image in the photo survey when the participant is at destination E.

Figure 21. Image in the photo survey when the participant is at destination D.

28

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

24
 A

ug
us

t 2
02

2 



Figure 23. Image in the photo survey when the participant is at destination F.
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