23 research outputs found

    Techniques for evaluation of LAMP amplicons and their applications in molecular biology

    Get PDF
    Loop-mediated isothermal amplification (LAMP) developed by Notomi et al. (2000) has made it possible to amplify DNA with high specificity, efficiency and rapidity under isothermal conditions. The ultimate products of LAMP are stem-loop structures with several inverted repeats of the target sequence and cauliflower-like patterns with multiple loops shaped by annealing between every other inverted repeats of the amplified target in the similar strand. Because the amplification process in LAMP is achieved by using four to six distinct primers, it is expected to amplify the target region with high selectivity. However, evaluation of reaction accuracy or quantitative inspection make it necessary to append other procedures to scrutinize the amplified products. Hitherto, various techniques such as turbidity assessment in the reaction vessel, post-reaction agarose gel electrophoresis, use of intercalating fluorescent dyes, real-time turbidimetry, addition of cationic polymers to the reaction mixture, polyacrylamide gel-based microchambers, lateral flow dipsticks, fluorescence resonance energy transfer (FRET), enzyme-linked immunosorbent assays and nanoparticle-based colorimetric tests have been utilized for this purpose. In this paper, we reviewed the best-known techniques for evaluation of LAMP amplicons and their applications in molecular biology beside their advantages and deficiencies. Regarding the properties of each technique, the development of innovative prompt, cost-effective and precise molecular detection methods for application in the broad field of cancer research may be feasible

    Multi-scale digital soil mapping with deep learning

    Get PDF
    We compared different methods of multi-scale terrain feature construction and their relative effectiveness for digital soil mapping with a Deep Learning algorithm. The most common approach for multi-scale feature construction in DSM is to filter terrain attributes based on different neighborhood sizes, however results can be difficult to interpret because the approach is affected by outliers. Alternatively, one can derive the terrain attributes on decomposed elevation data, but the resulting maps can have artefacts rendering the approach undesirable. Here, we introduce ‘mixed scaling’ a new method that overcomes these issues and preserves the landscape features that are identifiable at different scales. The new method also extends the Gaussian pyramid by introducing additional intermediate scales. This minimizes the risk that the scales that are important for soil formation are not available in the model. In our extended implementation of the Gaussian pyramid, we tested four intermediate scales between any two consecutive octaves of the Gaussian pyramid and modelled the data with Deep Learning and Random Forests. We performed the experiments using three different datasets and show that mixed scaling with the extended Gaussian pyramid produced the best performing set of covariates and that modelling with Deep Learning produced the most accurate predictions, which on average were 4–7% more accurate compared to modelling with Random Forests

    Systemic therapy of Cushing’s syndrome

    Get PDF
    Cushing’s disease (CD) in a stricter sense derives from pathologic adrenocorticotropic hormone (ACTH) secretion usually triggered by micro- or macroadenoma of the pituitary gland. It is, thus, a form of secondary hypercortisolism. In contrast, Cushing’s syndrome (CS) describes the complexity of clinical consequences triggered by excessive cortisol blood levels over extended periods of time irrespective of their origin. CS is a rare disease according to the European orphan regulation affecting not more than 5/10,000 persons in Europe. CD most commonly affects adults aged 20–50 years with a marked female preponderance (1:5 ratio of male vs. female). Patient presentation and clinical symptoms substantially vary depending on duration and plasma levels of cortisol. In 80% of cases CS is ACTH-dependent and in 20% of cases it is ACTH-independent, respectively. Endogenous CS usually is a result of a pituitary tumor. Clinical manifestation of CS, apart from corticotropin-releasing hormone (CRH-), ACTH-, and cortisol-producing (malign and benign) tumors may also be by exogenous glucocorticoid intake. Diagnosis of hypercortisolism (irrespective of its origin) comprises the following: Complete blood count including serum electrolytes, blood sugar etc., urinary free cortisol (UFC) from 24 h-urine sampling and circadian profile of plasma cortisol, plasma ACTH, dehydroepiandrosterone, testosterone itself, and urine steroid profile, Low-Dose-Dexamethasone-Test, High-Dose-Dexamethasone-Test, after endocrine diagnostic tests: magnetic resonance imaging (MRI), ultra-sound, computer tomography (CT) and other localization diagnostics. First-line therapy is trans-sphenoidal surgery (TSS) of the pituitary adenoma (in case of ACTH-producing tumors). In patients not amenable for surgery radiotherapy remains an option. Pharmacological therapy applies when these two options are not amenable or refused. In cases when pharmacological therapy becomes necessary, Pasireotide should be used in first-line in CD. CS patients are at an overall 4-fold higher mortality rate than age- and gender-matched subjects in the general population. The following article describes the most prominent substances used for clinical management of CS and gives a systematic overview of safety profiles, pharmacokinetic (PK)-parameters, and regulatory framework

    The effect of ultrasound on thromboembolic model of brain stroke in rat

    No full text
    Background: Ultrasound (US) has been used in neuroprotection after cerebral ischemia; however, its use is controversial. Application of US in combination with fibrinolytic agents may improve fibrinolytic effects. In this study the effects of US, alone or in combination with tissue plasminogen activator (tPA), on brain ischemic injury were examined and we studied whether US is protective in the brain injured by ischemia under normothermic conditions. Methods: We performed two studies. In the first study, rectal and brain temperatures were compared. In the second study, we studied whether US alone or in combination with tPA is neuroprotective in thromboembolic stroke. To induce focal cerebral ischemia, a clot was formed in a catheter. Once the clot had formed, the catheter was advanced 17 mm in the internal carotid artery until its tip was 1-2 mm away from the origin of the middle cerebral artery (MCA). The preformed clot in the catheter was then injected, and the catheter was removed. The wound was then closed and the infarction volume, edema and neurological deficits were measured after MCA occlusion. Results: The temperature in the brain was approximately 0.50 ºC lower than the rectal temperature. In the control, US+low tPA, low tPA, US+high tPA and, high tPA groups, the infarct volume (%) was 34.56±4.16, 17.09±6.72, 21.25±7.8, 13.5±10.72 and 20.61±6.17 (mean ±SD) at 48 h after MCA occlusion, respectively. The results indicate that US alone reduces the infarct volume by 30% compared to that of the control group (P<0.05). US improved neurological deficits and reduced brain edema significantly (p<0.05). Conclusions: This study indicate that US appears to have a protective effect, alone and in combination with tPA, in an embolic model of stroke

    The potential of probiotics for treating acne vulgaris: A review of literature on acne and microbiota

    No full text
    Acne is known as a chronic inflammatory skin disease with sever adverse effects on quality of life in the patients. The increasing resistance to antibiotics has decreased their effectiveness in treating acne. As viable microbial dietary supplements, probiotics provide health benefits through fighting pathogens and maintaining the homeostasis of the gut and skin microbiome. The present article reviewed the potential of probiotics as beneficial microorganisms for treating acne vulgaris. This review of literature was conducted through a bibliographic search of popular databases, including Science Direct, PubMed, Scielo and Medline, using keywords such as probiotics, prebiotics, synbiotics, microbiome, and acne vulgaris to determine potential applications of these beneficial microbiomes in treating acne vulgaris. Acne lesions are associated with increases in proportion of Propionibacterium acnes as a skin commensal bacterium. The environmental studies showed inhibitory effects of probiotics on P. acnes, mediating by antibacterial proteins and bacteriocin-like inhibitory substances, and their immunomodulatory effects onkeratinocytes and epithelial cells. Probiotics were also found to inhibit cytokine IL-8 in epithelial cells and keratinocytes, suggesting immunomodulatory activities. Moreover, glycerol fermentation by Staphylococcus epidermidis was found to be a natural skin defense against acne and an overgrowth inhibitor of P. acnes. As an antimicrobial agent in lotions and cosmetic formulations, Lactococcus sp. can decrease the inflammatory mediators that are produced by P. acnes and cause vasodilation, edema, mast cell degranulation and TNF-alpha release. Oral administration of probiotics was found to constitute an adjuvant therapy to conventional modalities for treating mild-to-moderate acne vulgaris. © 2020 Wiley Periodicals LLC
    corecore