88 research outputs found

    Multi-step self-guided pathways for shape-changing metamaterials

    Get PDF
    Multi-step pathways, constituted of a sequence of reconfigurations, are central to a wide variety of natural and man-made systems. Such pathways autonomously execute in self-guided processes such as protein folding and self-assembly, but require external control in macroscopic mechanical systems, provided by, e.g., actuators in robotics or manual folding in origami. Here we introduce shape-changing mechanical metamaterials, that exhibit self-guided multi-step pathways in response to global uniform compression. Their design combines strongly nonlinear mechanical elements with a multimodal architecture that allows for a sequence of topological reconfigurations, i.e., modifications of the topology caused by the formation of internal self-contacts. We realized such metamaterials by digital manufacturing, and show that the pathway and final configuration can be controlled by rational design of the nonlinear mechanical elements. We furthermore demonstrate that self-contacts suppress pathway errors. Finally, we demonstrate how hierarchical architectures allow to extend the number of distinct reconfiguration steps. Our work establishes general principles for designing mechanical pathways, opening new avenues for self-folding media, pluripotent materials, and pliable devices in, e.g., stretchable electronics and soft robotics.Comment: 16 pages, 3 main figures, 10 extended data figures. See https://youtu.be/8m1QfkMFL0I for an explanatory vide

    Peptide exchange on MHC-I by TAPBPR is driven by a negative allostery release cycle.

    Get PDF
    Chaperones TAPBPR and tapasin associate with class I major histocompatibility complexes (MHC-I) to promote optimization (editing) of peptide cargo. Here, we use solution NMR to investigate the mechanism of peptide exchange. We identify TAPBPR-induced conformational changes on conserved MHC-I molecular surfaces, consistent with our independently determined X-ray structure of the complex. Dynamics present in the empty MHC-I are stabilized by TAPBPR and become progressively dampened with increasing peptide occupancy. Incoming peptides are recognized according to the global stability of the final pMHC-I product and anneal in a native-like conformation to be edited by TAPBPR. Our results demonstrate an inverse relationship between MHC-I peptide occupancy and TAPBPR binding affinity, wherein the lifetime and structural features of transiently bound peptides control the regulation of a conformational switch located near the TAPBPR binding site, which triggers TAPBPR release. These results suggest a similar mechanism for the function of tapasin in the peptide-loading complex

    Infectious disease emergence and global change: thinking systemically in a shrinking world

    Get PDF

    Vertical distribution of methane oxidation and methanotrophic response to elevated methane concentrations in stratified waters of the Arctic fjord Storfjorden (Svalbard, Norway)

    Get PDF
    The bacterially mediated aerobic methane oxidation (MOx) is a key mechanism in controlling methane (CH₄) emissions from the world’s oceans to the atmosphere. In this study, we investigated MOx in the Arctic fjord Storfjorden (Svalbard) by applying a combination of radio-tracerbased incubation assays (³H-CH₄ and ¹⁴C-CH₄), stable CCH₄ isotope measurements, and molecular tools (16S rRNA gene Denaturing Gradient Gel Electrophoresis (DGGE) fingerprinting, pmoA- and mxaF gene analyses). Storfjorden is stratified in the summertime with melt water (MW) in the upper 60m of the water column, Arctic water (ArW) between 60 and 100 m, and brine-enriched shelf water (BSW) down to 140 m. CH₄ concentrations were supersaturated with respect to the atmospheric equilibrium (about 3–4 nM) throughout the water column, increasing from ~20nM at the surface to a maximum of 72nM at 60m and decreasing below. MOx rate measurements at near in situ CH₄ concentrations (here measured with ³H-CH₄ raising the ambient CH₄ pool by >2 nM) showed a similar trend: low rates at the sea surface, increasing to a maximum of ~2.3nMday⁻¹ at 60 m, followed by a decrease in the deeper ArW/BSW. In contrast, rate measurements with ¹⁴C-CH₄ (incubations were spiked with ~450nM of ¹⁴C-CH₄, providing an estimate of the CH₄ oxidation at elevated concentration) showed comparably low turnover rates (>1nMday⁻¹) at 60 m, and peak rates were found in ArW/BSW at ~100m water depth, concomitant with increasing ¹³C values in the residual CH₄ pool. Our results indicate that the MOx community in the surface MW is adapted to relatively low CH₄ concentrations. In contrast, the activity of the deep-water MOx community is relatively low at the ambient, summertime CH₄ concentrations but has the potential to increase rapidly in response to CH⁴ availability. A similar distinction between surface and deepwater MOx is also suggested by our molecular analyses. The DGGE banding patterns of 16S rRNA gene fragments of the surface MW and deep water were clearly different. A DGGE band related to the known type I MOx bacterium Methylosphaera was observed in deep BWS, but absent in surface MW. Furthermore, the Polymerase Chain Reaction (PCR) amplicons of the deep water with the two functional primers sets pmoA and mxaF showed, in contrast to those of the surface MW, additional products besides the expected one of 530 base pairs (bp). Apparently, different MOx communities have developed in the stratified water masses in Storfjorden, which is possibly related to the spatiotemporal variability in CH₄ supply to the distinct water masses

    Powering up the “biogeochemical engine”: The impact of exceptional ventilation of a deep meromictic lake on the lacustrine redox, nutrient and methane balances

    No full text
    The Lake Lugano North Basin has been meromictic for several decades, with anoxic waters below 100 m depth. Two consecutive cold winters in 2005 and 2006 induced exceptional deep mixing, leading to a transient oxygenation of the whole water column. With the ventilation of deep waters and the oxidation of large quantities of reduced solutes, the lake's total redox-balance turned positive, and the overall hypolimnetic oxygen demand of the lake strongly decreased. The disappearance of 150 t dissolved phosphorous (P) during the first ventilation in March 2005 is attributed to the scavenging of water-column-borne P by newly formed metal oxyhydroxides and the temporary transfer to the sediments. The fixed nitrogen (N) inventory was reduced by ~30% (~1000 t). The water-column turnover induced the nitratation of the previously NO−3-free deep hypolimnion by oxidation of large amounts of legacy NH+4 and by mixing with NO−3-rich subsurface water masses. Sediments with a strong denitrifying potential, but NO−3-starved for decades, were brought in contact with NO−3-replete waters, invigorating benthic denitrification and rapid fixed N loss from the lake in spite of the overall more oxygenated conditions. Similarly, a large microbial aerobic CH4 oxidation (MOx) potential in the hypolimnion was capitalized upon ventilation of the deep basin. Almost all CH4, which had been built up over more than 40 years (~2800 t), was removed from the water column within 30 days. However, boosted MOx could only partly explain the disappearance of the CH4. The dominant fraction (75%) of the CH4 evaded to the atmosphere, through storage flux upon exposure of anoxic CH4-rich water to the atmosphere. As of today, the North Basin seems far from homeostasis regarding its fixed N and CH4 budgets, and the deep basin's CH4 pool is recharging at a net production rate of ~66 t y−1. The size of impending CH4 outbursts will depend on the frequency and intensity of exceptional mixing events in the future

    Spatial variations in surface water methane super-saturation and emission in Lake Lugano, southern Switzerland

    No full text
    We measured methane concentrations in the surface water of the northern basin of Lake Lugano in spring (May 2012) and autumn (October 2011, 2012), and calculated turbulent diffusive methane fluxes to the atmosphere. Surface water methane concentrations were highly variable in space and time but always exceeded atmospheric equilibrium. Methane concentrations were significantly lower in spring (on average 16 nmol L-1) than during the autumn sampling campaigns (on average 57 nmol L-1 in 2011 and 45 nmol L-1 in 2012). This suggests methane accumulation in the surface mixed layer during the summer productive season. The origin of the methane in the lake's surface waters requires further assessment, but the observed concentration profiles indicate that the excess methane originates from a near-surface source, rather than from the large deep-water methane pool in the anoxic monimolimnion. As a consequence of the higher surface water methane concentrations and increased buoyancy turbulence caused by autumnal cooling of the surface boundary layer, diffusive fluxes were much higher in October (average similar to 97 mu mol m(-2) day(-1), compared to 7 mu mol m(-2) day(-1) in May 2012). The increase in methane concentration in the surface water between spring and autumn suggests links between methane accumulation and the annual biological cycle, yet seasonal changes in wind and temperature forcing of methane emission likely play an important modulating role. While the relative importance of biological versus physical controls on methane emission in Lake Lugano awaits further investigations, our study underscores that lakes can act as an important source of methane to the atmosphere, even when the lake-internal microbial methane filter in the water column seems to work efficiently
    corecore