58 research outputs found

    Climate and atmospheric models of rocky planets: habitability and observational properties

    Full text link
    The quest for atmospheric spectral signatures that may witness biological activity in exoplanets is focused on rocky planets. The best targets for future, challenging spectroscopic observations will be selected among potentially habitable planets. Surface habitability can be quantified and explored with climate and atmospheric models according to temperature-based criteria. The conceptual, modellistic, technological and interpretative complexity of the problem requires to develop flexible climate and atmospheric models suited for a comprehensive exploration of observationally unconstrained parameters, and to simulate and interpret definitely non-terrestrial conditions. We present a summary and preliminary results on the work we are performing on multi-parametric explorations of the habitability and observational properties of rocky planets.Comment: to appear on MemSAIt, vol 94. Proceedings of the Hack100 Conference: Past, Present and Future of Astrophysical Spectroscopy, 6-10 June 2022, Trieste, Ital

    The MAGIC Experiment and Its First Results

    Full text link
    With its diameter of 17m, the MAGIC telescope is the largest Cherenkov detector for gamma ray astrophysics. It is sensitive to photons above an energy of 30 GeV. MAGIC started operations in October 2003 and is currently taking data. This report summarizes its main characteristics, its rst results and its potential for physics.Comment: 6 pages, 3 figures, to be published in the Proceedings of the 6th International Symposium ''Frontiers of Fundamental and Computational Physics'' (FFP6), Udine (Italy), Sep. 26-29, 200

    Evaluation of Microbiome-Host Relationships in the Zebrafish Gastrointestinal System Reveals Adaptive Immunity Is a Target of Bis(2-ethylhexyl) Phthalate (DEHP) Exposure

    Get PDF
    To improve physical characteristics of plastics such as flexibility and durability, producers enrich materials with phthalates such as di-2-(ethylhexyl) phthalate (DEHP). DEHP is a high production volume chemical associated with metabolic and immune disruption in animals and humans. To reveal mechanisms implicated in phthalate-related disruption in the gastrointestinal system, male and female zebrafish were fed DEHP (3 ppm) daily for two months. At the transcriptome level, DEHP significantly upregulated gene networks in the intestine associated with helper T cells' (Th1, Th2, and Th17) specific pathways. The activation of gene networks associated with adaptive immunity was linked to the suppression of networks for tight junction, gap junctional intercellular communication, and transmembrane transporters, all of which are precursors for impaired gut integrity and performance. On a class level, DEHP exposure increased Bacteroidia and Gammaproteobacteria and decreased Verrucomicrobiae in both the male and female gastrointestinal system. Further, in males there was a relative increase in Fusobacteriia and Betaproteobacteria and a relative decrease in Saccharibacteria. Predictive algorithms revealed that the functional shift in the microbiome community, and the metabolites they produce, act to modulate intestinal adaptive immunity. This finding suggests that the gut microbiota may contribute to the adverse effects of DEHP on the host by altering metabolites sensed by both intestinal and immune Th cells. Our results suggest that the microbiome-gut-immune axis can be modified by DEHP and emphasize the value of multiomics approaches to study microbiome-host interactions following chemical perturbations

    MAGIC observations of very high energy gamma-rays from HESS J1813-178

    Get PDF
    Recently, the HESS collaboration has reported the detection of gamma-ray emission above a few hundred GeV from eight new sources located close to the Galactic Plane. The source HESS J1813-178 has sparked particular interest, as subsequent radio observations imply an association with SNR G12.82-0.02. Triggered by the detection in VHE gamma-rays, a positionally coincident source has also been found in INTEGRAL and ASCA data. In this Letter we present MAGIC observations of HESS J1813-178, resulting in the detection of a differential gamma-ray flux consistent with a hard-slope power law, described as dN/(dA dt dE) = (3.3+/-0.5)*10^{-12} (E/TeV)^{-2.1+/-0.2} cm^(-2)s^(-1)TeV^(-1). We briefly discuss the observational technique used, the procedure implemented for the data analysis, and put this detection in the perspective of multifrequency observations.Comment: Accepted by ApJ Letter

    Discovery of Very High Energy γ\gamma-Rays from Markarian~180 Triggered by an Optical Outburst

    Get PDF
    The high-frequency-peaked BL Lacertae object Markarian~180 (Mrk~180) was observed to have an optical outburst in 2006 March, triggering a Target of Opportunity observation with the MAGIC telescope. The source was observed for 12.4 hr and very high energy γ\gamma-ray emission was detected with a significance of 5.5 σ\sigma. An integral flux above 200 GeV of (2.3±0.7)×1011cm2s1(2.3\pm0.7)\times10^{-11} {cm}^{-2} {s}^{-1} was measured, corresponding to 11% of the Crab Nebula flux. A rather soft spectrum with a photon index of 3.3±0.7-3.3\pm0.7 has been determined. No significant flux variation was found.Comment: Accepted by ApJ Letters, minor revision

    Genome sequences of four cluster P mycobacteriophages

    Get PDF
    Four bacteriophages infecting Mycobacterium smegmatis mc2155 (three belonging to subcluster P1 and one belonging to subcluster P2) were isolated from soil and sequenced. All four phages are similar in the left arm of their genomes, but the P2 phage differs in the right arm. All four genomes contain features of temperate phages

    Variable Very High Energy Gamma-ray Emission from the Microquasar LS I +61 303

    Get PDF
    Microquasars are binary star systems with relativistic radio-emitting jets. They are potential sources of cosmic rays and laboratories for elucidating the physics of relativistic jets. Here we report the detection of variable gamma-ray emission above 100 gigaelectron volts from the microquasar LS I +61 303. Six orbital cycles were recorded. Several detections occur at a similar orbital phase, suggesting the emission is periodic. The strongest gamma-ray emission is not observed when the two stars are closest to one another, implying a strong orbital modulation of the emission or the absorption processes.Comment: 11 pages with 4 figure

    Observation of Gamma Rays from the Galactic Center with the MAGIC Telescope

    Get PDF
    Recently, the Galactic Center has been reported to be a source of very high energy (VHE) gamma-rays by the VERITAS, CANGAROO and HESS experiments. The energy spectra as measured by these experiments show substantial differences. In this Letter we present MAGIC observations of the Galactic Center, resulting in the detection of a differential gamma-ray flux consistent with a steady, hard-slope power law, described as dN/(dA dt dE) = (2.9+/-0.6)*10^{-12} (E/TeV)^{-2.2+/-0.2} cm^{-2}s^{-1}TeV^{-1}. The gamma-ray source is centered at (Ra, Dec)=(17h 45m 20s, -29deg 2'. This result confirms the previous measurements by the HESS experiment and indicates a steady source of TeV gamma-rays. We briefly describe the observational technique used, the procedure implemented for the data analysis, and discuss the results in the perspective of different models proposed for the acceleration of the VHE gamma-rays.Comment: ApJL submitte

    Variable Very High Energy Gamma-ray Emission from the Microquasar LS I +61 303

    Get PDF
    Microquasars are binary star systems with relativistic radio-emitting jets. They are potential sources of cosmic rays and laboratories for elucidating the physics of relativistic jets. Here we report the detection of variable gamma-ray emission above 100 gigaelectron volts from the microquasar LS I +61 303. Six orbital cycles were recorded. Several detections occur at a similar orbital phase, suggesting the emission is periodic. The strongest gamma-ray emission is not observed when the two stars are closest to one another, implying a strong orbital modulation of the emission or the absorption processes.Comment: 11 pages with 4 figure
    corecore