6,365 research outputs found

    Precise measurements of UV atomic lines: Hyperfine structure and isotope shifts in the 398.8 nm line of Yb

    Full text link
    We demonstrate a technique for frequency measurements of UV transitions with sub-MHz precision. The frequency is measured using a ring-cavity resonator whose length is calibrated against a reference laser locked to the D2D_2 line of 87^{87}Rb. We have used this to measure the 398.8 nm 1S01P1{^1S}_0 \leftrightarrow {^1P}_1 line of atomic Yb. We report isotope shifts of all the seven stable isotopes, including the rarest isotope 168^{168}Yb. We have been able to resolve the overlapping 173^{173}Yb(F=3/2F = 3/2) and 172^{172}Yb transitions for the first time. We also obtain high-precision measurements of excited-state hyperfine structure in the odd isotopes, 171^{171}Yb and 173^{173}Yb. The measurements resolve several discrepancies among earlier measurements.Comment: 7 pages, 6 figure

    Thermistor spar monitor

    No full text

    Mammographic image restoration using maximum entropy deconvolution

    Get PDF
    An image restoration approach based on a Bayesian maximum entropy method (MEM) has been applied to a radiological image deconvolution problem, that of reduction of geometric blurring in magnification mammography. The aim of the work is to demonstrate an improvement in image spatial resolution in realistic noisy radiological images with no associated penalty in terms of reduction in the signal-to-noise ratio perceived by the observer. Images of the TORMAM mammographic image quality phantom were recorded using the standard magnification settings of 1.8 magnification/fine focus and also at 1.8 magnification/broad focus and 3.0 magnification/fine focus; the latter two arrangements would normally give rise to unacceptable geometric blurring. Measured point-spread functions were used in conjunction with the MEM image processing to de-blur these images. The results are presented as comparative images of phantom test features and as observer scores for the raw and processed images. Visualization of high resolution features and the total image scores for the test phantom were improved by the application of the MEM processing. It is argued that this successful demonstration of image de-blurring in noisy radiological images offers the possibility of weakening the link between focal spot size and geometric blurring in radiology, thus opening up new approaches to system optimization.Comment: 18 pages, 10 figure

    A Godel-Friedman cosmology?

    Full text link
    Based on the mathematical similarity between the Friedman open metric and Godel's metric in the case of nearby distances, we investigate a new scenario for the Universe's evolution, where the present Friedman universe originates from a primordial Godel universe by a phase transition during which the cosmological constant vanishes. Using Hubble's constant and the present matter density as input, we show that the radius and density of the primordial Godel universe are close, in order of magnitude, to the present values, and that the time of expansion coincides with the age of the Universe in the standard Friedman model. In addition, the conservation of angular momentum provides, in this context, a possible origin for the rotation of galaxies, leading to a relation between the masses and spins corroborated by observational data.Comment: Extended version, accepted for publication in Physical Review

    Tyrosine photophysics during the early stages of β-amyloid aggregation leading to Alzheimer's

    Get PDF
    We have monitored the formation of toxic β-amyloid oligomers leading to Alzheimer's disease by detecting changes in the fluorescence decay of intrinsic tyrosine. A new approach based on the non-Debye model of fluorescence kinetics resolves the complexity of the underlying photophysics. The gradual disappearance of nonmonotonic fluorescence decay rates, at the early stages of aggregation as larger, tighter-packed oligomers are formed, is interpreted in terms of tyrosine-peptide dielectric relaxation influencing the decay. The results demonstrate the potential for a new type of fluorescence lifetime sensing based on dual excited-state/dielectric relaxation, with application across a broad range of biological molecules. The results also reconcile previously conflicting models of protein intrinsic fluorescence decay based on rotamers or dielectric relaxation by illustrating conditions under which both are manifest

    Acupuncture for chronic neck pain: a pilot for a randomised controlled trial

    Get PDF
    Background: Acupuncture is increasingly being used for many conditions including chronic neck pain. However the evidence remains inconclusive, indicating the need for further well-designed research. The aim of this study was to conduct a pilot randomised controlled parallel arm trial, to establish key features required for the design and implementation of a large-scale trial on acupuncture for chronic neck pain. Methods: Patients whose GPs had diagnosed neck pain were recruited from one general practice, and randomised to receive usual GP care only, or acupuncture ( up to 10 treatments over 3 months) as an adjunctive treatment to usual GP care. The primary outcome measure was the Northwick Park Neck Pain Questionnaire (NPQ) at 3 months. The primary analysis was to determine the sample size for the full scale study. Results: Of the 227 patients with neck pain identified from the GP database, 28 (12.3%) consenting patients were eligible to participate in the pilot and 24 (10.5%) were recruited to the trial. Ten patients were randomised to acupuncture, receiving an average of eight treatments from one of four acupuncturists, and 14 were randomised to usual GP care alone. The sample size for the full scale trial was calculated from a clinically meaningful difference of 5% on the NPQ and, from this pilot, an adjusted standard deviation of 15.3%. Assuming 90% power at the 5% significance level, a sample size of 229 would be required in each arm in a large-scale trial when allowing for a loss to follow-up rate of 14%. In order to achieve this sample, one would need to identify patients from databases of GP practices with a total population of 230,000 patients, or approximately 15 GP practices roughly equal in size to the one involved in this study (i.e. 15,694 patients). Conclusion: This pilot study has allowed a number of recommendations to be made to facilitate the design of a large-scale trial, which in turn will help to clarify the existing evidence base on acupuncture for neck pain

    Reconstruction of Solar Subsurfaces by Local Helioseismology

    Full text link
    Local helioseismology has opened new frontiers in our quest for understanding of the internal dynamics and dynamo on the Sun. Local helioseismology reconstructs subsurface structures and flows by extracting coherent signals of acoustic waves traveling through the interior and carrying information about subsurface perturbations and flows, from stochastic oscillations observed on the surface. The initial analysis of the subsurface flow maps reconstructed from the 5 years of SDO/HMI data by time-distance helioseismology reveals the great potential for studying and understanding of the dynamics of the quiet Sun and active regions, and the evolution with the solar cycle. In particular, our results show that the emergence and evolution of active regions are accompanied by multi-scale flow patterns, and that the meridional flows display the North-South asymmetry closely correlating with the magnetic activity. The latitudinal variations of the meridional circulation speed, which are probably related to the large-scale converging flows, are mostly confined in shallow subsurface layers. Therefore, these variations do not necessarily affect the magnetic flux transport. The North-South asymmetry is also pronounced in the variations of the differential rotation ("torsional oscillations"). The calculations of a proxy of the subsurface kinetic helicity density show that the helicity does not vary during the solar cycle, and that supergranulation is a likely source of the near-surface helicity.Comment: 17 pages, 10 figures, in "Cartography of the Sun and the Stars", Editors: Rozelot, Jean-Pierre, Neiner, Corali

    Comparison of ankle and subtalar joint complex range of motion during barefoot walking and walking in Masai Barefoot Technology sandals

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Masai Barefoot Technology (MBT, Switzerland) produce footwear which they claim simulate walking barefoot on soft undulating ground. This paper reports an investigation into the effect of MBT sandals on the motion of the ankle and subtalar joint complex during walking.</p> <p>Methods</p> <p>Range of motion data was collected in the sagittal, frontal and transverse plane from the ankle and subtalar joint complex from 32 asymptomatic subjects using the CODA MPX30 motion analysis system during both barefoot walking and walking in the MBT sandal. Shod and un-shod data were compared using the Wilcoxon signed ranks test.</p> <p>Results</p> <p>A significantly greater range of motion in the frontal and sagittal planes was recorded when walking in the MBT sandal (p = 0.031, and p = 0.015 respectively). In the transverse plane, no significant difference was found (p = 0.470).</p> <p>Conclusions</p> <p>MBT sandals increase the range of motion of the ankle and subtalar joint complex in the frontal and sagittal planes. MBT footwear could therefore have a role to play in the management of musculoskeletal disorders where an increase in frontal and sagittal plane range of motion is desirable.</p
    corecore