25,678 research outputs found

    Simplifying one-loop amplitudes in superstring theory

    Get PDF
    We show that 4-point vector boson one-loop amplitudes, computed in ref.[1] in the RNS formalism, around vacuum configurations with open unoriented strings, preserving at least N=1 SUSY in D=4, satisfy the correct supersymmetry Ward identities, in that they vanish for non MHV configurations (++++) and (-+++). In the MHV case (--++) we drastically simplify their expressions. We then study factorisation and the limiting IR and UV behaviour and find some unexpected results. In particular no massless poles are exposed at generic values of the modular parameter. Relying on the supersymmetric properties of our bosonic amplitudes, we extend them to manifestly supersymmetric super-amplitudes and compare our results with those obtained in the D=4 hybrid formalism, pointing out difficulties in reconciling the two approaches for contributions from N=1,2 sectors.Comment: 38 pages plus appendice

    Massive higher spins and holography

    Full text link
    We review recent progress towards the understanding of higher spin gauge symmetry breaking in AdS space from a holographic vantage point. According to the AdS/CFT correspondence, N=4 SYM theory at vanishing coupling constant should be dual to a theory in AdS which exhibits higher spin gauge symmetry enhancement. When the SYM coupling is non-zero, all but a handful of HS currents are violated by anomalies, and correspondingly local higher spin symmetry in the bulk gets spontaneously broken. In agreement with previous results and holographic expectations, we find that, barring one notable exception (spin 1 eating spin 0), the Goldstone modes responsible for HS symmetry breaking in AdS have non-vanishing mass even in the limit in which the gauge symmetry is restored. We show that spontaneous breaking a' la Stueckelberg implies that the mass of the relevant spin s'=s-1 Goldstone field is exactly the one predicted by the correspondence.Comment: 8 pages, talk presented by M.B. at the "Fourth Meeting on Constrained Dynamics and Quantum gravity" held in Cala Gonone (Sardinia, Italy), September 12-16, 200

    Cooperative Spectrum Sensing Using Random Matrix Theory

    Full text link
    In this paper, using tools from asymptotic random matrix theory, a new cooperative scheme for frequency band sensing is introduced for both AWGN and fading channels. Unlike previous works in the field, the new scheme does not require the knowledge of the noise statistics or its variance and is related to the behavior of the largest and smallest eigenvalue of random matrices. Remarkably, simulations show that the asymptotic claims hold even for a small number of observations (which makes it convenient for time-varying topologies), outperforming classical energy detection techniques.Comment: Submitted to International Symposium on Wireless Pervasive Computing 200

    SL(2,Z) Multiplets in N=4 SYM Theory

    Full text link
    We discuss the action of SL(2,Z) on local operators in D=4, N=4 SYM theory in the superconformal phase. The modular property of the operator's scaling dimension determines whether the operator transforms as a singlet, or covariantly, as part of a finite or infinite dimensional multiplet under the SL(2,Z) action. As an example, we argue that operators in the Konishi multiplet transform as part of a (p,q) PSL(2,Z) multiplet. We also comment on the non-perturbative local operators dual to the Konishi multiplet.Comment: 14 pages, harvmac; v2: published version with minor change

    Precision Spectroscopy and Higher Spin symmetry in the ABJM model

    Get PDF
    We revisit Kaluza-Klein compactification of 11-d supergravity on S^7/Z_k using group theory techniques that may find application in other flux vacua with internal coset spaces. Among the SO(2) neutral states, we identify marginal deformations and fields that couple to the recently discussed world-sheet instanton of Type IIA on CP^3. We also discuss charged states, dual to monopole operators, and the Z_k projection of the Osp(4|8) singleton and its tensor products. In particular, we show that the doubleton spectrum may account for N=6 higher spin symmetry enhancement in the limit of vanishing 't Hooft coupling in the boundary Chern-Simons theory.Comment: 44 page

    SCUBA imaging of NGC 7331 dust ring

    Get PDF
    We present observations of the spiral galaxy NGC 7331 using the Sub-millimetre Common User Bolometer Array (SCUBA) on the James Clark Maxwell Telescope. We have detected a dust ring of 45 arcsec radius (3.3 kpc) at wavelengths of 450 and 850-micron. The dust ring is in good correspondence with other observations of the ring in the mid-infrared (MIR), CO and radio-continuum, suggesting that the observed dust is associated with the molecular gas and star formation. A B-K colour map shows an analogous ring structure with an asymmetry about the major axis, consistent with the extinction being produced by a dust ring. The derived temperature of the dust lies between 16 and 31 K and the gas-to-dust ratio between 150 and 570, depending on the assumed dust emission efficiency index (beta=1.5 or 2.).Comment: 5 pages, 6 figures, to be published in MNRA

    D-brane Instantons on the T^6/Z_3 orientifold

    Full text link
    We give a detailed microscopic derivation of gauge and stringy instanton generated superpotentials for gauge theories living on D3-branes at Z_3-orientifold singularities. Gauge instantons are generated by D(-1)-branes and lead to Affleck, Dine and Seiberg (ADS) like superpotentials in the effective N=1 gauge theories with three generations of bifundamental and anti/symmetric matter. Stringy instanton effects are generated by Euclidean ED3-branes wrapping four-cycles on T^6/\Z_3. They give rise to Majorana masses in one case and non-renormalizable superpotentials for the other cases. Finally we determine the conditions under which ADS like superpotentials are generated in N=1 gauge theories with adjoints, fundamentals, symmetric and antisymmetric chiral matter.Comment: 31 pages, no figure

    BPS surface observables in six-dimensional (2,0) theory

    Get PDF
    The supergroup OSp(8*|4), which is the superconformal group of (2,0) theory in six dimensions, is broken to the subgroup OSp(4|2)xOSp(4|2) by demanding the invariance of a certain product in a superspace with eight bosonic and four fermionic dimensions. We show that this is consistent with the symmetry breaking induced by the presence of a flat two-dimensional BPS surface in the usual (2,0) superspace, which has six bosonic and sixteen fermionic dimensions.Comment: 9 pages, LaTeX. v2: reference adde

    Glueball Scattering Amplitudes from Holography

    Full text link
    Using techniques developed in a previous paper three-point functions in field theories described by holographic renormalization group flows are computed. We consider a system of one active scalar and one inert scalar coupled to gravity. For the GPPZ flow, their dual operators create states that are interpreted as glueballs of the N=1 SYM theory, which lies at the infrared end of the renormalization group flow. The scattering amplitudes for three-glueball processes are calculated providing precise predictions for glueball decays in N=1 SYM theory. Numerical results for low-lying glueballs are included.Comment: 34 pages v2: comments on local terms and references added, v3: version published in JHE
    • 

    corecore