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Introduction

There is a revival of interest in superstring loop amplitudes from different perspectives [1–

7]. The original one-loop computations by Brink, Green and Schwarz [8] paved the way to

remarkable developments both in string theory and in field theory related contexts. Some

time ago the BGS amplitude for four vector bosons in D = 10 Type I superstrings was

generalised to D = 4 in vacuum configurations with open and unoriented strings preserv-

ing at least N = 1 supersymmetry [1]. Although the final result could be expressed in a

compact form as a sum over the various sectors, only the contribution of the N = 4 sector

and the ‘irreducible’ contributions of the N = 1, 2 sectors could be easily seen to be pro-

portional to the tree-level amplitude. Supersymmetry Ward identities imply that the only

non-vanishing 4-point amplitudes be Maximally Helicity Violating (MHV) [9]. Thus loop

corrections should reproduce similar structures to tree-level amplitudes in supersymmetric

vacuum configurations in D = 4.

Aim of the present paper is to simplify the results of [1] using the spinor helicity for-

malism and to analyse the singularities of the resulting amplitudes. We will also comment

on the soft behaviour of the amplitudes and compare our results with the ones obtained

in [10] within the D = 4 ‘hybrid formalism’ [11]1 and find it hard to reconcile the two

approaches. The main difference is that despite vector boson vertex operators are com-

pactification independent, i.e. they are proportional to the identity operator of the internal

SCFT, only in the N = 4 sector one has a complete factorisation of the space-time and

internal part, encoded in the sum of KK momenta or alike. In N = 1, 2 sectors the com-

putation does not factorise even for the ‘irreducible’ contributions, encoded in a function

FN of the modular parameter and of the compactification moduli, which does not simply

coincide with the internal partition function.

1Other hybrid approaches have been proposed in diverse dimensions: D = 6 [12], D = 3 [13], D = 2 [14].
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The plan of the paper is as follows. In section 1, we will briefly review one-loop open

superstring amplitudes in order to fix the notation. In section 2 and 3 we rewrite 2- and 3-

point ‘amplitudes’,2 which vanish in the case of N = 4 sector, in the helicity formalism. We

show that they satisfy the correct Ward identities, in that, for instance, 3-point amplitudes

with 3 positive helicity vector bosons vanish, and identify their divergences. The results

of [1] for 4-point amplitudes are reviewed in section 4 and systematically simplified in

section 5, where we show that only MHV amplitudes are non-vanishing. The case of

‘regular’ branes at orbifold singularities [15, 16] is discussed in section 6. In section 7

we study factorisation and find some unexpected result, i.e. no massless poles appear for

generic modular parameter, even in sectors with reduced SUSY. We then discuss the IR

and UV behaviours of the independent amplitudes: planar, non-planar (3−1 and 2−2)

and unorientable. After extending our bosonic amplitudes to full super-amplitudes, in

section 8 we draw a comparison between our results and the results of the D = 4 hybrid

formalism [10] and we discuss potential sources of disagreement. We will conclude with

some speculations about higher points, higher loops, soft limits and KLT relations beyond

tree-level in section 9.

1 Superstrings at one loop

In theories with open and unoriented strings scattering amplitudes can be computed in-

serting the corresponding vertex operators on the boundaries [17]. The vector boson vertex

(in the super-ghost pictures q = 0) reads

V
(0)
B = aµ (∂X

µ + ik·ψψµ) eikX =

(
a·∂X − i

2
fµνψ

µψν

)
eikX (1.1)

where fµν = aµkν − kµaν is the linearised field strength.3

The tree-level disk contribution is similar to Veneziano amplitude

Atree
4 (1, 2, 3, 4) = g2sF

4

[B(s, t)
st

T1234 +
B(t, u)
tu

T1423 +
B(u, s)
us

T1342
]

(1.2)

where gs is the coupling constant for open string. The Veneziano factor B(x, y) and the

Chan-Paton factor Tabcd read

B(x, y) = Γ(1− α′x)Γ(1− α′y)

Γ(1− α′x− α′y)
, Tabcd = tr(tatbtctd) (1.3)

while the totally symmetric kinematic factor F 4 is given by

F 4 = [2(f1f2f3f4)−
1

2
(f1f2)(f3f4) + cyclic(234)] (1.4)

In D = 4, F 4 is non-vanishing only in the Maximally Helicity Violating (MHV) case

F 4
++++ = F 4

−+++ = 0 , F 4
−−++ =

〈12〉3
〈23〉〈34〉〈41〉st (1.5)

2We put amplitudes in quote because they do not correspond to “scattering” due to collinear momenta.
3Henceforth we will refer to :ψµψν : as (fermionic) bilinear.
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thereby, for a given color ordering, the partial amplitudes read

Atree
4 [1−, 2−, 3+, 4+] = Atree

YM[1−, 2−, 3+, 4+]B(s, t) (1.6)

while Atree
4 [1+, 2+, 3+, 4+] = 0 = Atree

4 [1−, 2+, 3+, 4+]. Generalization to higher points can

be found in [18–21].

The one-loop four-point amplitude in D = 10 was computed long ago by Brink, Green

and Schwarz [8]. It receives three contributions: planar, non-planar and un-orientable.

Setting the modular parameter of the covering torus to be τA = iT/2 for the annulus and

τM = iT/2 + 1/2 for the Möbius strip, all contributions can be written in the form

A1−loop
4 (1, 2, 3, 4) = g4sTCPα

′2F 4

∫ ∞

0

dT

T 5+1

∫

RCP

d4ziΠ4(zi, ki) (1.7)

where TCP is the Chan-Paton factor, RCP is the integration region, depending on color

ordering, and

Π4(zi, ki) =
∏

i<j

exp[−2α′ki·kjG(zij)] (1.8)

is the ubiquitous Koba-Nielsen factor with G(zij) the scalar propagator (Bargmann kernel)

for boundary insertions at one-loop

GA(z1, z2; τA) = −
[
log

θ1(z1 − z2|τ)
θ′1(0|τ)

− 2π
[Im (z1 − z2)]

2

Im τ

]
(1.9)

We will often write Gij instead to G(zij).
In the planar case all vertex operators are inserted on the same boundary of an annulus

T plan
1234 = tr(t1t2t3t4)tr(1) , Rplan

1234 = {z1 > z2 > z3 > z4 = 0} (1.10)

plus cyclic permutations of 234. The parametrization of the world-sheet variable on a

boundary is z = iTν/2 with ν ∈ [0, 1].

In the non-planar case vertex operators are equally distributed among the two bound-

aries of an annulus

T non−pl
12|34 = tr(t1t2)tr(t3t4) , Rnon−pl

12|34 = {z1 > z2; z3 > z4 = 0} (1.11)

plus permutations of 2 with 3 and 4. The parametrization of the world-sheet variable on

the other boundary is z = iTν/2 + 1/2 with ν ∈ [0, 1].

For gauge groups with (anomalous) U(1) factors there is an additional non-planar

contribution with 3 vertices inserted on a boundary and the remaining one on the other

boundary

T anom
123|4 = tr(t1t2t3)tr(t4) , Ranom

123|4 = {z1 > z2 > z3 = 0; z4} (1.12)

plus permutations of 4 with 1,2,3.

In the un-orientable case vertex operators are inserted along the single boundary of a

Möbius strip with twice the length of the strip itself

T un−or
1234 = 2tr(t1t2t3t4)TΩ , Run−or

1234 = {z1 > z2 > z3 > z4 = 0} (1.13)

– 3 –
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plus cyclic permutations of 234, with TΩ the tension of the relevant Ω-plane in units of α′,

quantized charge. The parametrization of the world-sheet variable on the unique boundary

is z = iTν/2 with ν ∈ [0, 2].

At low-energies α′|ki·kj | ≪ 1, Π4(zi, ki) ≈ 1 and one can trivially integrate over the

insertion points zi producing a factor of T 4. The remaining integral over the modular

parameter
∫
dT/T 2 is IR finite (for T → ∞) but UV divergent (for T → 0), due to the

dilaton tadpole associated to the empty boundary and the ‘cross-cap’. Yet for SO(32),

the dilaton tadpole cancels and the Type I theory if free of both UV divergences and

chiral anomalies [22]. Non-planar amplitudes are regulated by momentum flow between

the two boundaries.

A subtle issue related to potential anomalies is the role of the odd spin structure in the

computation of scattering amplitudes. In order to detect potential anomalies, one of the

gauge boson vertex operators should appear with longitudinal polarisation and should de-

couple thanks to BRST invariance in a consistent theory. The standard procedure requires

the insertion of a vertex operator in the q = −1 super-ghost picture and an additional

world-sheet super-current insertion brought down by integration over the super-modulus

associated to the world-sheet gravitino zero-mode. In D = 10 hexagon gauge anomaly

could be detected this way [23, 24]. In the D = 4 case under consideration, 4-point am-

plitudes are not anomalous and BRST invariance allows to replace the combination of the

super-modulus and world-sheet super-current with a picture changing operator [25]. The

latter can act on the vertex operator in the q = −1 super-ghost picture and change its

picture q = 0. As in [1], one can then proceed with all vertex operators in the q = 0

picture.4

1.1 Partition function

In order to generalize BGS formula to (supersymmetric) vacuum configurations for open

and unoriented strings in D = 4, one has to first recall the structure of the one-loop

partition function. As in [1], we will mainly focus here on magnetised or intersecting

D-branes at (non-compact) orbifold singularities [15, 16]. Consistency requires local RR

tadpole cancellation [26–30].

The partition function depends on the choice of brane configuration, including number

and type of intersections or magnetic fluxes thereon, Ω-planes and orbifold group Γ. For

simplicity we will focus on Γ = Zn ⊂ SU(3), i.e. ZI ≈ exp(2πinI/n)Z
I with n1+n2+n3 =

0 (mod 1) in order to preserve SUSY. We will label the branes of type a by ia = 1, . . . , Na,

and the orbifold sectors by h = 0, . . . , n − 1. We define three combinations that express

4This argument must be taken with a grain of salt since it has caused a problematic impression on the

referee. According to the referee, that we thank for his/her punctual observation, it leads to an incorrect

number of fermionic propagators, i.e. Sn−2
ij instead of Sn−1

ij . The latter is what one might expect in line

with the counting of loop momenta in the field theory limit. Yet, our treatment of the odd spin structure

precisely matches the results in the even spin structures in so far as the counting of Sij is concerned.

Moreover, we checked that our procedure reproduces the results of [24] since the longitudinal vertex in the

q = 0 picture is a total derivative that leads to a vanishing result in a consistent theory or to a boundary

term as a signal of an anomaly. We plan to return to this issue in the future.
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the twist or shift in the open string spectrum

uIab = hvIab + iǫIab
T

2
(1.14)

where I = 1, 2, 3, ǫIab denotes the angles between brane a and brane b or the shift in the

string spectrum induced by the relative magnetic flux and vIab denotes the twist caused by

the orbifold. The combinations uIab determine the amount of supersymmetry preserved in

each sector.

1.2 N = 1 sectors

The weakest condition one can impose to have ‘minimal’, i.e. N = 1, supersymmetry is

u1ab + u2ab + u3ab = 0, with
∏

I u
I
ab 6= 0. In this case the partition function assumes the form

ZN=1
α = XN=1

ab

θα(0)

η3

3∏

I=1

θα(u
I
ab)

θ1(uIab)
with XN=1

ab =
VXIab

2GSO2Ωnorb(α′T )2
(1.15)

where α labels the four spin structures, VX represents the ‘regulated’ volume of space-

time (to be replaced by (2π)4δ(Σiki) in scattering amplitudes), Iab denotes the number

of brane intersections or the degeneracy of Landau levels. We have traced the origin of

various integers in the denominator, wherein the factor (α′T )2 accounts for integration over

loop-momenta in D = 4.

1.3 N = 2 sectors

In sectors with N = 2 supersymmetry one of the uIab vanishes, let us say u3ab = 0. As a

consequence u2ab = −u1ab. The partition function reads

ZN=2
α = XN=2

ab

θ2α(0)θ
2
α(uab)

η6θ21(uab)
with XN=2

ab =
VXΛ

‖
abI

⊥
ab

2GSO2Ωnorb(α′T )2
(1.16)

Where uab = u1ab, I
⊥
ab denotes the number of intersections or degeneracy of Landau levels in

the ‘twisted/transverse’ directions and Λ
‖
ab denotes the lattice sum in the two (one complex)

‘untwisted/longitudinal’ compact directions.

1.4 N = 4 sectors

Sectors with N = 4 maximal supersymmetry correspond to uIab = 0 and the partition

function is simply given by

ZN=4
α = XN=4

ab

θ4α(0)

η12
with XN=4

ab =
VXΛab

2GSO2Ωnorb(α′T )2
(1.17)

where Λab denotes the lattice sum in the six internal directions.

Later on, we will compute 2, 3 and 4-point scattering amplitudes. Although the first

two formally vanish on-shell due to collinear kinematics, we report their derivation using

the spinor helicity formalism since it highlights the meaning of some of the structures that

will later appear in the more interesting 4-pt amplitudes. Definitions and notation for

elliptic functions and helicity spinors can be found in the appendices.

– 5 –



J
H
E
P
0
1
(
2
0
1
6
)
0
4
3

2 Two-point amplitudes

Let us begin with the two-point amplitude without specifying for the time being whether the

amplitude is planar, non-planar or un-oriented. We will see that the results are substantially

the same up to minor modifications. Although momentum conservation implies k1·k2 = 0

and then k1·a2 = 0 = k2·a1, we will formally keep f1f2 6= 0. The one-loop amplitude is

given by

A1-loop
2 [1, 2] = g2s

∑

α

cα

∫ ∞

0

dT

T

∫ iT/2

0
dz1

∫ z1

0
dz2δ(z2) 〈V (0)

B (z1)V
(0)
B (z2)〉α

= g2s

∫ ∞

0

dT

T

∫
dµ(2)(E(2) +O

(2))

(2.1)

where E
(2) and O

(2) denote the contributions of the even and odd spin structures. Con-

tractions with zero and one bilinear are zero, we have only the two bilinears contribution.

In the even spin structures, the reduced contraction of two bilinears yields

E
(2) =

∑

α

cα 〈〈V (0)
B (z1)V

(0)
B (z2)〉〉α

= −〈〈:k1·ψ1 a1·ψ1: :k2·ψ2 a2·ψ2:〉〉α = −α′2 (f1f2)

2
S2
α(z12) (2.2)

where Sα(z12) is the one-loop fermionic propagator (Szego kernel)5

Sα(z1, z2; τ) =





−∂z1G(z1, z2), if α = 1, odd

θα(z1 − z2)

θ1(z1 − z2)

θ′1(0)

θα(0)
, if α 6= 1 even.

(2.3)

where G is the scalar propagator in 1.9. We often use the notation Sij instead of S1(zij) =

−∂iG(zij). Using the identity S2
α = P−eα−1, where P is Weierstrass function, that does

not contribute to the sum over spin structures, and eα−1 = 2πi∂τ log(θα/η), we have

E
(2) = −α′2

2
(f1f2)EN e−α′k1·k2G12 (2.4)

EN = −
∑

α

cαeα−1ZN
α (2.5)

where the function EN introduced in [1], labelled by the number N of preserved SUSY,

depends on the world-sheet modular parameter T , on the parameters of the brane configu-

ration coded in uIab and the moduli of the compactification. EN vanishes in N = 4 sectors

due to Riemann identity.

In the odd spin structure, which only contributes in N = 1 sectors6 we can absorb the

four zero modes in a unique way

O
(2) = −cGSO

1 〈:k1·ψ0 a1·ψ0: :k2·ψ0 a2·ψ0:〉 = −2α′2cGSO
1 π2XN=1(f̃1f2)/T

2 (2.6)

5In the space orthogonal to the constant zero-mode.
6In N = 2, 4 sectors one cannot absorb the internal fermionic zero-modes ψi

0 with vector boson vertex

operators.
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For brevity we define the function

CN=1 = −2cGSO
1 π2XN /T 2 (2.7)

Combining the contributions of even and odd spin structures, the two-point amplitude

thus reads

A1-loop
2 [1, 2] = g2sα

′2
∫ ∞

0

dT

T

[
CN=1(f̃1f2) + EN (f1f2)

] ∫
dµ(2) e−α′k1·k2G12 (2.8)

Fixing the helicities and noting that k1·k2 = 0 we have two simple results. Choosing (±±)

and using f̃± = ±if± we obtain

A1-loop
2 [1±, 2±] = −g2sα

′2

4
(f±

1 f±
2 )

∫ ∞

0

dT

T
[EN ± iCN=1]T

2 (2.9)

while choosing (±∓) the amplitude vanishes, viz.

A1-loop
2 [1±, 2∓] = 0 (2.10)

To obtain planar, non-planar and un-oriented contributions one has to choose the specific

modular parameter and the corresponding integration domain. The result is generically

divergent for both N = 1, 2 sectors, wherein it encodes β-functions and one-loop threshold

corrections to the gauge kinetic functions [31, 32]. As already observed, it vanishes in

N = 4 sectors, which points to the no-bubble conjecture in N = 4 SYM, i.e. to the absence

of one-loop massless amplitudes with two (bunches of) insertion points.

3 Three-point amplitudes

We continue our preliminary analysis and compute the three-point one-loop amplitude

that reads:

A1-loop
3 [1, 2, 3]

= g3s
∑

α

cα

∫ ∞

0

dT

T

∫ iT/2

0
dz1

∫ z1

0
dz2

∫ z2

0
dz3 δ(z3) 〈V (0)

B (z1)V
(0)
B (z2)V

(0)
B (z3)〉α

= g3s

∫ ∞

0

dT

T

∫
dµ(3)

(
E
(3) +O

(3)
)

(3.1)

Momentum conservation for massless vector bosons implies ki·kj = 0 i.e. collinear momenta.

In order to proceed one could either relax momentum conservation [31, 33–35] yet with

(
∑

i ki)
2 = 0 or analytically continue to complex momenta [36]. In the spinor helicity

formalism, reviewed in appendix A, one has 2ki·kj = −〈ij〉[ij] and there are two options:

either 〈ij〉 6= 0, with [ij] = 0, convenient for MHV or (−−−) helicity configurations or the

other way around. In the even spin structures, we have two types of contributions from

two and three bilinears. The term with three bilinears produces

E
(3)
3-bil = −i

∑

α

cα 〈:k1·ψ1 a1·ψ1: :k2·ψ2 a2·ψ2: :k3·ψ3 a3·ψ3:〉α

= iα′3(f1f2f3)
∑

α

cαSα(z12)Sα(z23)Sα(z13)ZN
α Π3(zi, ki)

= −iα′3(f1f2f3)ω123Π3(zi, ki)

(3.2)

– 7 –
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where

ω123 = S12 + S23 + S31 , (3.3)

Π3(zi, ki) =
∏

i<j e
−α′ki·kjGij is the Koba-Nielsen factor and in the last step we have used

Sα(z12)Sα(z23) = −ω123Sα(z13)− S′
α(z13) 2Sα(z12)S

′
α(z12) = P ′

12 (3.4)

The terms with two bilinears produce

E
(3)
2-bil = −

∑

cyclic

∑

α

cα 〈:a1·∂X1: :k2·ψ2 a2·ψ2: :k3·ψ3 a3·ψ3:〉α

= i
α′3

2
EN

∑

cyclic

a3·P3(f1f2)Π3(zi, ki) (3.5)

where Pµ
i =

∑
j 6=i k

µ
j Sij , with Sij = −∂iGij .

In the odd spin structure we have similar contributions, from three bilinears we have

three terms depending on the choice of the points where the two zero modes are absorbed7

O
(3)
3-bil = −icGSO

1

∑

swaps

〈:k1·ψ0 a1·ψ0: :k2·ψ0 a2·ψ: :k3·ψ0 a3·ψ:〉

= −iα′3CN=1

∑

cyclical

(f̃1f2f3)S23Π3(zi, ki) (3.6)

where the sum on exchanges means summing terms with ψ and ψ0 exchanged in the same

vertex. From two bilinears we have three terms

O
(3)
2-bil = −

∑

cyclical

〈:a1·∂X: :k2·ψ0 a2·ψ0: :k3·ψ0 a3·ψ0:〉

=
i

2
α′3CN=1

∑

cyclical

a3·P3(f̃1f2)Π3(zi, ki) (3.7)

Let us consider the two independent helicity configurations. First the case (+++).

We begin from even spin structures, we must compute the scalar products ai·Pi:

a+3 ·P3(f
+
1 f+

2 ) = − [12]2√
2

(
[31]〈1q〉
〈3q〉 S31+

[32]〈2q〉
〈3q〉 S32

)

= (f+
1 f+

2 f+
3 )

(
[12]〈1q〉
[23]〈3q〉S31−

[12]〈2q〉
[31]〈3q〉S32

)
(3.8)

Using momentum conservation [12]〈1q〉 = −[32]〈3q〉 and [12]〈2q〉 = −[13]〈3q〉, so that one

has a+3 ·P3(f
+
1 f+

2 ) = (f+
1 f+

2 f+
3 )(S31 + S23) and one can thus factor out (f+

1 f+
2 f+

3 ) and get

E
(3) =

i

2
α′3EN (f+

1 f+
2 f+

3 )
∑

cyclic

(S31 − S23)Π3(zi, ki) = 0 (3.9)

7Absorbing all the zero modes at two points would give zero due to normal ordering at the remaining

point.
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The contribution of the odd spin structure becomes proportional to the contribution of

the even spin structure after using f̃ = if , thus the complete amplitude vanishes for this

choice of helicities, as well as for (−−−),

A1-loop
3 [1+, 2+, 3+] = 0 = A1-loop

3 [1−, 2−, 3−] (3.10)

as expected from SUSY Ward identities.8 Indeed, barring anomalous U(1)’s, the only

supersymmetric invariant for 2- and 3-points is WαWα giving rise to the standard F 2

bosonic term, since F 3, though present in the bosonic string even at tree level, does not

admit a SUSY completion.

Let us then consider the case (−++). For this helicity configuration one has a single

term. The even spin structures produce

E
(3) =

i

2
α′3ENa−1 ·P1(f

+
2 f+

3 )Π3(zi, ki) (3.11)

It is convenient to compute a−1 ·P1(f
+
2 f+

3 ) factorizing the MHV amplitude. In a−1 ·ki the

factor 〈1i〉 would give zero due to collinear kinematics. In order to circumvent these

subtleties, one can analytically continue to complex momenta and choose q1 = k3. This

yields the ‘right’ result:

a−1 ·P1(f
+
2 f+

3 ) = − 1√
2

〈12〉[23]
[13]

[23]2S12 = −
√
2

[23]3

[12][31]
k1·k2S12 (3.12)

Using partial integration one can replace k1·k2S12 with k2·k3S23 to make it look more

symmetric and finally find

E
(3) = − i√

2
α′3EN

[23]3

[12][31]
k2·k3S23Π3(zi, ki) (3.13)

In the odd spin structure, only N = 1 sectors contribute. Following similar steps, one finds

a similar result with EN replaced by −iCN . Now we can write the complete three-point

amplitude

A1-loop
3 [1−, 2+, 3+] = − i√

2
g3sα

′3 [23]3

[12][31]

∫ ∞

0

dT

T

∫
dµ(3) (EN − iCN=1) k2·k3S23Π3(zi, ki)

(3.14)

To compute planar, non-planar and un-oriented contributions one has to choose the

specific modular parameter and the corresponding integration domain [26, 37–40]. The

result is generically divergent for both N = 1, 2 sectors, wherein it is related by gauge

invariance to the 2-point amplitude, encoding β-functions and one-loop threshold correc-

tions to the gauge kinetic functions. As already observed, it vanishes in N = 4 sectors, in

a way reminiscent of the no-triangle conjecture in N = 4 SYM, i.e. the absence of one-loop

massless amplitudes with three (bunches of) insertion points.

8We thank Nathan Berkovits for raising this issue.
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4 Four-point amplitudes

We are now ready to compute four-point amplitudes. We start by briefly reviewing and

summarising the results of [1] and then analyse them in terms of helicity configurations,

color orderings and limiting behaviours.

The starting point is

A1-loop
4 [1, 2, 3, 4] = g4s

∑

α

cα

∫ ∞

0

dT

T

∫
dµ(4) 〈V0(1)V0(2)V0(3)V0(4)〉α

= g4s

∫ ∞

0

dT

T

∫
dµ(4)

(
E
(4) +O

(4)
) (4.1)

where the integration region RCP and the Chan-Paton factor depend on the distributions

of insertions on the two boundaries for the annulus (planar 4−0, non-planar 3−1 and

2−2). For the un-orientable case there is no choice, except for the relative ordering of the

insertions. Here, we will only summarise the results, the details can be found in [1].

4.1 Even spin structures, four bilinears

E
(4)
4-bil =

∑

α

cα 〈〈:k1·ψ1 a1·ψ1: . . . :k4·ψ4 a4·ψ4:〉〉αZN
α (4.2)

The fermionic contribution consists in two types of terms connected and disconnected. The

result for connected contractions is

E
(4)
4-bil,conn = α′4

∑

conn

(f1f2f3f4)

[
1

2
EN (P13 + ω123ω341 + P24 + ω234ω412)−FN

]
Π4(zi, ki)

(4.3)

where EN (vanishing for N = 4) was defined previously in (2.5) and ωijk are defined

in 3.3, while

FN =
4∑

α=2

cαe
2
α−1ZN

α (4.4)

depends on the number N of preserved SUSY, on the world-sheet modular parameter T ,

on the parameters of the brane configuration coded in uIab and the moduli of the “com-

pactification”. The disconnected contractions yield

E
(4)
4-bil,disconn = α′4

∑

disconn

1

4
(f1f2)(f3f4) [EN (P12 + P34) + FN ] Π4(zi, ki) (4.5)

4.2 Even spin structures, three bilinears

Aside from the bosonic contractions, the fermionic contractions are the same as for three-

point amplitudes, discussed previously, thus one finds

E
(4)
3-bil = −i

∑

cyclic

∑

α

cα 〈〈:a1·∂X1: :k2·ψ2 a2·ψ2 k2·ψ2: :a3·ψ3 k3·ψ3: :a4·ψ4:〉〉αΠ4(zi, ki)ZN
α

= −α′4
∑

cyclic

a1P1(f1f2f3)ω123ENΠ4(zi, ki)

(4.6)
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4.3 Even spin structures, two bilinears

We already computed the fermionic contractions, thus the contribution to the amplitude is

E
(4)
2-bil = −

∑

pairs

〈〈:a1·∂X1: :a2·∂X2:〉〉 〈〈:k3·ψ3 a3·ψ3: :k4·ψ4 a4·ψ4:〉〉αZN
α

= −α′3

2
EN

∑

pairs

(f3f4)
(
a1·a2∂1∂2G12 − α′a1·P1a2·P2

)
Π4(zi, ki)

(4.7)

Notice that each term is gauge invariant per se up to total derivatives. For instance,

replacing a1 (or a2) with the momentum k1 and noting that ∂ziΠ4 = −α′ki·PiΠ4 (with

Π4 = Π4(zi, ki) for brevity) and ∂1(a2·k1∂2G21) = −∂1(a2·P2), the bosonic contractions in

E
(4)
2-bil can be rewritten as a total derivative that vanishes upon integration

(
k1·a2∂1∂2G12 − α′k1·P1a2·P2

)
Π4 = ∂1(a2·P2)Π4 + ∂1Π4a2·P2 = ∂1(a2·P2Π4) (4.8)

4.4 Odd spin structure, four bilinears

Four fermionic bilinears allow three types of contractions.

First one can absorb the four zero modes at two points (for example z1 and z2):

O
(4)
4-bil,2 = cGSO

1

∑

pairs

〈:k1·ψ0 a1·ψ0: :k2·ψ0 a2·ψ0: :k3·ψ a3·ψ: :k4·ψ a4·ψ:〉

=
1

4
α′4CN=1

∑

pairs

(f̃1f2)(f3f4)S
2
34Π4(zi, ki)

(4.9)

Second, one can absorb two zero modes in a point and the others in two separate

points. There are twelve ways to do this:

O
(4)
4-bil,1 = cGSO

1

∑

cyclic

∑

subcyclic

∑

swaps

〈:k1·ψ0 a1·ψ0: :k2·ψ0 a2·ψ: :k3·ψ0 a3·ψ: :k4·ψ a4·ψ:〉

= α′4CN=1

∑

cyclical

∑

conn

(f̃1f2f4f3)S24S43Π4(zi, ki)
(4.10)

Third, one can absorb the zero modes in four different points:

O
(4)
4-bil,0 = cGSO

1

∑

swaps

〈:k1·ψ0 a1·ψ: :k2·ψ0 a2·ψ: :k3·ψ0 a3·ψ: :k4·ψ0 a4·ψ:〉

= −2α′4CN=1

∑

disconn

ǫµ1µ2µ3µ4(f1f2)
µ1µ2(f3f4)

µ3µ4S12S34Π4(zi, ki)
(4.11)

4.5 Odd spin structure, three bilinears

With three bilinears, one has three ways to absorb zero modes and the contractions yield

O
(4)
3-bil =− icGSO

1

∑

cyclical

∑

swaps

〈:a1·∂X: :k2·ψ0 a2·ψ0: :k3·ψ0 a3·ψ: :k4·ψ0 a4·ψ:〉

=− α′4CN=1

∑

cyclical

a1·P1

4∑

i=2

(f̃ifi+1fi+2)S1(zi+1 i+2)Π4(zi, ki)

(4.12)
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4.6 Odd spin structure, two bilinears

With two fermionic bilinears, there are six ways to absorb the four fermionic zero-modes

O
(4)
2-bil = −cGSO

1

∑

pairs

〈:a1·∂X1: :a2·∂X2: :k3·ψ0 a3·ψ0: :k4·ψ0 a4·ψ0:〉

= −1

2
α′3CN=1

∑

pairs

(
a1·a2∂1∂2G12 − α′a1·P1a2·P2

)
(f̃3f4)Π4(zi, ki)

(4.13)

5 Simplifying 4-pt amplitudes

Let us now simplify the above results and show that non MHV amplitudes vanish. We will

also identify the regions of the integration domain that generically expose singularities and

later on discuss which (tadpole) conditions the brane configurations must satisfy in order

to cancel or mitigate the singular behaviours.

After analyzing the symmetry properties of the integration variables, that allow to

manipulate the integrands and reduce the number of independent contributions, we will

study the three independent helicity configurations and check that A(++++) = 0 and

A(−+++) = 0.

The F-term is proportional to F 4 thus reproduces the MHV structure, so we will focus

on the E-term.

5.1 A1-loop
4 [1+, 2+, 3+, 4+] = 0

This case is the most laborious because none of the traces over the Lorentz indices of the

fi vanish.

The six terms arising from contractions of two bilinears are separately gauge invariant,

thus we can always choose qi = qj = q and get ai·aj = 0 and fix q so as to make some

other product between momenta and polarizations vanish. For example one can compute

a1·P1a2·P2 with the choice q1 = q2 = k4 and get

a+1 ·P1a
+
2 ·P2(f

+
3 f+

4 ) = −1

2
[12]2(S12 − S13)(S21 − S23)(f

+
3 f+

4 ) = −1

2
[12]2[34]2

(
S2
12 +Ω123

)

(5.1)

For brevity we define

Ω123 = S12S23 + S23S31 + S31S12 (5.2)

Collecting the various Lorentz invariant structures yields

E
(4)
2-bil = −1

4
EN

∑

disconn

(f+
1 f+

2 )(f+
3 f+

4 )
(
S2
12 + S2

34 +Ω123 +Ω134

)
(5.3)

Using Schouten’s identity traces with two and four f ’s can be related

(f+
1 f+

2 )(f+
3 f+

4 ) = [12]2[34]2

= [12][23][34][41]+[12][24][43][31]

= 2(f+
1 f+

2 f+
3 f+

4 )+2(f+
1 f+

2 f+
4 f+

3 ) (5.4)
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One can easily obtain two more similar formulae permuting the external legs. These for-

mulae can be inverted to give

(f+
1 f+

2 f+
3 f+

4 ) =
1

4

[
(f+

1 f+
2 )(f+

3 f+
4 )− (f+

1 f+
3 )(f+

2 f+
4 ) + (f+

1 f+
4 )(f+

2 f+
3 )

]
(5.5)

We rewrite all the traces in terms of single traces of four f ’s and obtain

E
(4)
2-bil = −1

2
EN

∑

conn

(f+
1 f+

2 f+
3 f+

4 )
(
S2
12 + S2

34 + S2
14 + S2

23 + 2Ω123 + 2Ω134

)
Π4(zi, ki) (5.6)

The three-bilinear term can be simplified using a cyclic gauge choice, for example qi =

ki+2, and momentum conservation a+i ·Pi = ai·ki+1(Si i+1+Si+3 i). With this choice all the

kinematic factors become equal a+i ·ki+1(f
+
i+1f

+
i+2f

+
i+3) = [12][23][34][41]/2 = (f+

1 f+
2 f+

3 f+
4 ).

Thus one finds

E
(4)
3-bil = −(f+

1 f+
2 f+

3 f+
4 )EN

∑

i

(Si i+1 + Si+3 i)ωi+1 i+2 i+3Π4(zi, ki) (5.7)

Expanding the sum we obtain

E
(4)
3-bil = −(f+

1 f+
2 f+

3 f+
4 )EN

[
4 (S12S34 + S23S41)

+
∑

cyclic

(2S41S12 − S12S24 − S24S41)

]
Π4(zi, ki) (5.8)

The terms S12S34 + S23S41 can be rewritten in four ways using partial integrations, for

example choosing the tern (412):

S12S34 + S23S41 = −2S41S12 −
u

s
(S41S12 + S12S24)−

u

t
(S41S12 + S24S41) (5.9)

To obtain the other three it’s enough to perform a cyclic permutation on the indices (412).

Replacing last equation in E
(4)
3-bil one gets

E
(4)
3-bil = (f+

1 f+
2 f+

3 f+
4 )EN

∑

cyclic

[
(S12S24+S24S41) (5.10)

+
u

s
(S41S12+S12S24)+

u

t
(S41S12+S24S41)

]
Π4(zi, ki)

The ratios of s, t, u can be used to transform the traces of f ’s into one another according to

u(f+
1 f+

2 f+
3 f+

4 ) = t(f+
1 f+

2 f+
4 f+

3 ) = s(f+
1 f+

3 f+
2 f+

4 ) (5.11)

that can be easily proved using the helicity formalism and momentum conservation. Thus

one gets

(f+
1 f+

2 f+
3 f+

4 )

(
S24(S12 + S41) +

u

t
S41(S12 + S24) +

u

s
S12(S41 + S24)

)

= (f+
1 f+

2 f+
3 f+

4 )S24(S12 + S41) + (f+
1 f+

2 f+
4 f+

3 )S41(S12 + S24)

+ (f+
1 f+

3 f+
2 f+

4 )S12(S41 + S24)

(5.12)
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that can be rewritten as a “connected” sum

E
(4)
3-bil = α′4EN

∑

conn

(f+
1 f+

2 f+
3 f+

4 )
∑

cyclic

(S12S24 + S24S41)Π4(zi, ki) (5.13)

It remains to simplify terms arising with four bilinears. We peruse (5.4) to rewrite

disconnected terms in terms of traces of four f ’s and use the identity P24 + ω234ω413 =

P13 + ω123ω341 to get

E
(4)
4-bil,E =

∑

conn

(f+
1 f+

2 f+
3 f+

4 )

[
1

2
(P12 + P34 + P14 + P23) + P13 + ω123ω341

]
Π4(zi, ki)

(5.14)

Expanding the products ω123ω341 and using partial integration one gets

ω123ω341 = −S2
13+S12S34+S23S41−(S21S13+S13S32)−(S13S34+S41S13)+S41S12+S23S34

= −S2
13−(S21S13+S13S32)−(S13S34+S41S13)

−u

s
(S12S24+S41S12)−

u

t
(S42S23+S23S34)

(5.15)

Recalling equation (5.4), the ratios u/t and u/s produce further mixing among the various

Lorentz invariant structures:

E
(4)
4-bil,E =

∑

conn

(f+
1 f+

2 f+
3 f+

4 )

[
1

2
(P12+P34+P14+P23)

−2Y13−
∑

cyclic

(S12S24+S24S41)

]
Π4(zi, ki) (5.16)

where

Y(zij) = −2
[
P(zij)− S2(zij)

]
(5.17)

Assembling all the terms and rewriting P − S2 in terms Y,9 one finally gets

E
(4) = −EN

∑

conn

(f+
1 f+

2 f+
3 f+

4 ) [Y12 + Y34 + Y14 + Y23 + 2Y13 +Ω123 +Ω134] Π4(zi, ki)

(5.18)

This expression vanishes using a generalized version of Fay ‘trisecant’ identity [42]:

Ω123 = S12S23 + S23S31 + S31S12 = −Y12 − Y23 − Y31 (5.19)

Let us now verify that the amplitude vanishes in the odd spin structure too. As usual

only N = 1 sectors contribute. The two and three bilinears terms are the same as the sum

over even spin structures, up to a by-now familiar constant:

O
(4)
2-bil =− α′4

2
(iCN=1)

∑

conn

(f+
1 f+

2 f+
3 f+

4 )
(
S2
12+S2

34+S2
14+S2

23+2Ω123 + 2Ω134

)
Π4(zi, ki)

(5.20)

O
(4)
3-bil =α′4(iCN=1)

∑

conn

(f+
1 f+

2 f+
3 f+

4 )
∑

cyclic

(S12S24 + S24S41)Π4(zi, ki) (5.21)

9See [41] for more details on relations between elliptic functions and string one-loop amplitudes.
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Let us then consider the terms with four bilinears. The term O
(4)
4-bil,2 is similar to the

disconnected part of four bilinears in the even spin structures:

O
(4)
4-bil,2 =

α′4

2
(iCN=1)

∑

conn

(f+
1 f+

2 f+
3 f+

4 )
(
S2
12 + S2

34 + S2
14 + S2

23

)
Π4(zi, ki) (5.22)

The term O
(4)
4-bil,1 yields

O
(4)
4-bil,1 = α′4(iCN=1)

∑

cyclical

∑

conn

(f+
1 f+

2 f+
4 f+

3 )S34S42Π4(zi, ki)

= α′4(iCN=1)
∑

cyclical

∑

conn

(f+
1 f+

2 f+
3 f+

4 )S21S14Π4(zi, ki)
(5.23)

The more problematic term is O
(4)
4-bil,0 but it can be computed using the decomposition of

f in definite helicity parts, detailed in appendix A,

O
(4)
4-bil,0 = −2α′4CN=1

∑

disconn

ǫµ1µ2µ3µ4(f
+
1 f+

2 )µ1µ2(f+
3 f+

4 )µ3µ4S12S34

= −α′4

2
(iCN=1)

∑

disconn

(f+
1 f+

2 )(f+
3 f+

4 ) (S13S24 − S41S23)

(5.24)

Using equation (5.4) the expression becomes

O
(4)
4-bil,0 = α′4(iCN=1)

∑

conn

(f+
1 f+

2 f+
3 f+

4 ) (S12S34 + S41S23) (5.25)

Singularly the terms S12S34 and S41S23 can be transformed in −Ω234 and −Ω214 using

partial integration and mixing of Lorentz invariant but reducible structures:

∑

conn

(f+
1 f+

2 f+
3 f+

4 )S12S34 = −
∑

conn

(f+
1 f+

2 f+
3 f+

4 )
[
S23S34 +

u

s
(S23S34 + S34S42)

]

= −
∑

conn

(f+
1 f+

2 f+
3 f+

4 )
[
S23S34 +

u

s
(Ω234 − S42S23)

]

= −
∑

conn

(f+
1 f+

2 f+
3 f+

4 ) [S23S34 +Ω234 − S43S32]

= −
∑

conn

(f+
1 f+

2 f+
3 f+

4 )Ω234

(5.26)

Similarly for S41S23. The final result is

O
(4)
4-bil,0 = −α′4(iCN=1)

∑

conn

(f+
1 f+

2 f+
3 f+

4 ) (Ω234 +Ω214) (5.27)

Summing all the terms, the contribution of the odd spin structure vanishes too. Contrary

to two or three point amplitudes, contributions from even and odd spin structure are not

simply proportional. Comparing even and odd spin structures O
(4)
2-bil, O

(4)
3-bil and O

(4)
4-bil,2

are substantially equal to the even ones. O
(4)
4-bil,0 reproduces the same terms as in ωω. We

note that S2 takes the place of Weierstrass function thus all the structures P − S2 vanish.

O
(4)
4-bil,1 has no counterpart in even sector.
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5.2 A1-loop
4 [1−, 2+, 3+, 4+] = 0

In this case, all the traces with f−
1 are zero

(f−
1 f+

i ) = 0 (f−
1 f+

i f+
j ) = 0 (f−

1 f+
i f+

j f+
k ) = 0 (5.28)

As a result the (ffff) terms and the four bilinears terms vanish. Only one term from

three bilinears survives and three terms from two bilinears:

E
(4) = −α′4a−1 ·P1EN

[
(f+

2 f+
3 f+

4 )ω234−
1

2
a+2 ·P2(f

+
3 f+

4 )

−1

2
a+3 ·P3(f

+
2 f+

4 )−1

2
a+4 ·P4(f

+
2 f+

3 )

]
Π4(zi, ki) (5.29)

We can compute the terms with two bilinears using the gauge choice q2 = q3 = q4 = k1
and q1 = k3 and obtain:

a+2 ·P2 = a+2 ·k3(S23 + S42) , a+3 ·P3 = a+3 ·k4(S34 + S23) , a+4 ·P4 = a+4 ·k2(S42 + S34)

(5.30)

As a+2 ·k3(f+
3 f+

4 ), a+3 ·k4(f+
2 f+

4 ) and a+4 ·k2(f+
2 f+

3 ) are all equal to (f+
2 f+

3 f+
4 ), we can factor

this out and the sum vanishes

E
(4) =− α′4ENa−1 ·P1(f

+
2 f+

3 f+
4 )

[
S23+S34+S42

− 1

2
(S23+S42+S34+S23+S42+S34)

]
Π4(zi, ki) = 0 (5.31)

In the odd spin structure O
(4)
2-bil and O

(4)
3-bil are substantially equal to their even counterparts,

in fact by direct computation we obtain the same result with the usual replacement of EN
with iCN=1, thus the odd spin structure contribution vanishes too. So we conclude that

the whole result is zero.

5.3 A1-loop
4 [1−, 2−, 3+, 4+] 6= 0

In this case, terms with traces of three f ’s vanish. The only non-vanishing irreducible

traces are (f−
1 f−

2 ) = −〈12〉2, (f+
3 f+

4 ) = −[34]2 and

(f−
1 f−

2 f+
3 f+

4 ) = (f−
1 f+

3 f−
2 f+

4 ) =
1

4
〈12〉2[34]2 = −F 4

−−++ (5.32)

thanks to f+
i f−

j = f−
j f+

i . For brevity we use F 4 instead of F 4
−−++. For terms with

two bilinears extra simplifications take place with the gauge choices q1 = q2 = k3, k4 and

q3 = q4 = k1, k2, while terms from contractions of three bilinears vanish in this case. The

F-term is non zero

E
(4)
F =

1

2
F 4Π4(zi, ki) (5.33)

Contributions derived from two bilinear contractions can be reduced to two terms:

E
(4)
2-bil =

EN
2

(f+
3 f+

4 )a−1 ·P1a
−
2 ·P2Π4(zi, ki) +

EN
2

(f−
1 f−

2 )a+3 ·P3a
+
4 ·P4Π4(zi, ki) (5.34)
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Using the gauge choices q1 = q2 = k4, one finds a
−
1 ·P1a

−
2 ·P2 = −1/2(f−

1 f−
2 )(S2

12+Ω123). If

we choose q1 = q2 = k3 we obtain a−1 ·P1a
−
2 ·P2 = −1/2(f−

1 f−
2 )(S2

12 + Ω412). Symmetrizing

a−1 ·P1a
−
2 ·P2 we have

a−1 ·P1a
−
2 ·P2 = −1

4
(f−

1 f−
2 )

(
2S2

12 +Ω123 +Ω412

)
(5.35)

and a similar one for a+3 ·P3a
+
4 ·P4. Summing these two terms yields

E
(4)
2-bil =

1

16
ENF 4

(
2S2

12 + 2S2
34 +Ω123 +Ω234 +Ω341 +Ω412

)
Π4(zi, ki) (5.36)

The E-terms of four bilinear produce

E
(4)
4-bil,E = −α′4

8
F 4

[
2P12 + 2P34 + P13 + P24 + P14 + P23

+ ω123ω341 + ω124ω431 + ω132ω241 + ω234ω412 + ω243ω312 + ω324ω413

]
Π4(zi, ki)

(5.37)

Expanding and collecting the sums of ω’s

ω123ω341 + ω124ω431 + ω132ω241 + ω234ω412 + ω243ω312 + ω324ω413

= −S2
12 − S2

34 − S2
13 − S2

24 − S2
14 − S2

23 − Ω123 − Ω234 − Ω341 − Ω412

(5.38)

Using formula (5.19) and summing all the contributions we have

E
(4) =

α′4

8
F 4 [4FN + EN (Y12 + Y34 − Y13 − Y24 − Y14 − Y23)] Π4(zi, ki) (5.39)

The contribution of the odd spin structure admits the same simplifications. The two

bilinears contribution is similar to the even one except for a minus sign due to f̃ :

O
(4)
2-bil =

α′4

16
(iCN=1)F

4
(
−2S2

12 + 2S2
34 − Ω123 − Ω412 +Ω143 +Ω234

)
Π4(zi, ki) (5.40)

As in the (++++) case, O
(4)
4-bil,2 cancels the S2 in O

(4)
2-bil

O
(4)
4-bil,2 = −α′4

8
(iCN=1)F

4
(
−S2

12 + S2
34

)
Π4(zi, ki) (5.41)

Terms with one bilinear yield

O
(4)
4-bil,1 = α′4CN=1

∑

cyclical

∑

conn

(f̃−
1 f−

2 f+
4 f+

3 )S24S43Π4(zi, ki)

= α′4CN=1

∑

cyclical

(f̃−
1 f−

2 f+
3 f+

4 )Ω234Π4(zi, ki)

= −α′4

4
(iCN=1)F

4 (−Ω234 − Ω341 +Ω412 +Ω123)Π4(zi, ki)
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Terms with no bilinears yield

O
(4)
4-bil,0 = −2α′4CN

∑

disconn

ǫµ1µ2µ3µ4(f
+
1 f+

2 )µ1µ2(f+
3 f+

4 )µ3µ4S12S34Π4(zi, ki)

= −2α′4CN ǫµ1µ2µ3µ4(f
−
1 )i′(f

−
2 )j′(f

+
3 )i(f

+
4 )j

×
[
(Σi′Σj′)µ1µ2(Σ̄iΣ̄j)µ3µ4S12S34+(Σi′Σ̄i)µ1µ3(Σj′Σ̄j)µ2µ4S13S24

+(Σi′Σ̄j)µ1µ4(Σ̄iΣj′)µ3µ2S14S32

]
Π4(zi, ki)

(5.42)

The matrices (Σi′Σ̄i)µν are symmetric in µ, ν thus contractions with the Levi-Civita tensor

give zero. The remaining term vanishes too

ǫµ1µ2µ3µ4(Σ
i′Σj′)µ1µ2(Σ̄iΣ̄j)µ3µ4 = −iǫi

′j′

k′ǫ
ij
kTr(Σ

k′Σ̄k) = 0 (5.43)

Summing all the terms in the odd spin structure and using the generalized Fay identity,

we have

O
(4) = α′4(iCN=1)F

4 5

8
(Y12 − Y34)Π4(zi, ki) (5.44)

Finally

A1-loop
4 [1−, 2−, 3+, 4+] =

α′4g4s
8

F 4

∫ ∞

0

dT

T

∫
dµ(4)

[
4FN + 5iCN=1 (Y12 − Y34)

+ EN (Y12 + Y34 − Y13 − Y24 − Y14 − Y23)

]
Π4(zi, ki)

(5.45)

A more symmetric result obtains for A1-loop
4 [1−, 2+, 3−, 4+] that is invariant under ex-

changes of 1 with 3 and of 2 with 4.

5.4 Permutation properties

The integrands of four-point amplitude have interesting transformation properties under

specific permutations of the variables zi. The explicit integration measure in the planar/un-

oriented case reads

∫
dµ

(4)
1234 =

∫ κ·iT/2

0
dz1

∫ z1

0
dz2

∫ z2

0
dz3

∫ z3

0
dz4δ(z4) (5.46)

Where κ = 1 for the annulus and κ = 2 for the Möbius-strip, due to the double length of

the boundary in the un-oriented case. The T dependence of the domain can be removed

changing variables to zi = κ·iTνi/2. The measure can be written in a form in which it is

easy to recognize its permutation properties. To this end we can introduce the necessary

step functions

∫
dµ

(4)
1234 =

(
iTκ

2

)4 ∫

R4

d4νθ(1− ν1)θ(ν1 − ν2) . . . θ(ν3 − ν4)θ(ν1) . . . θ(ν4)δ(ν4) (5.47)
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We may use the arguments of the first four step functions as new integration variables αi

that read

αi = νi − νi+1 for i = 1, 2, 3 , α4 = 1− ν1 (5.48)

The measure in the new variables is manifestly invariant under all permutations

∫
dµ

(4)
1234 =

(
iTκ

2

)4 ∫ 1

0
dα1 . . .

∫ 1

0
dα4δ

(
1−∑4

i=1αi

)
(5.49)

In the non-planar 3−1 case, the measure is substantially equivalent to the one for

planar three-point amplitudes, thus we can define variables similar to the previous case

β1 = ν1 − ν2 , β2 = ν2 − ν3 , β3 = 1− ν3 , β4 = ν4 (5.50)

The new measure is invariant under all the permutation of the first three variables

∫
dµ

(4)
123|4 =

(
iT

2

)4 ∫ 1

0
dβ1

∫ 1

0
dβ2

∫ 1

0
dβ3θ(1− β1 − β2 − β3)

∫ 1

0
dβ4δ(β4) (5.51)

Without changing variables and using the symmetry of the Chan-Paton factors, in the

2−2 non-planar case the measure can be rewritten as

∫
dµ

(4)
12|34 =

1

4

(
iT

2

)4 ∫

[0,1]4
d4νδ(ν4) =

1

16

(
iT

2

)4 ∫

[0,1]4
d4ν

∑

i

δ(νi) (5.52)

The last identity following from the arbitrariness in the choice of the point that can be

fixed at the origin. In this form it is clearly invariant under all the permutations of the νi
variables.

Symmetry properties of the measures can be used to simplify the computations. All

world-sheet integrals assume the schematic form
∫

dµ(4) I(zi, ki)Π4(zi, ki) (5.53)

The idea is to find the permutations that leave the Koba-Nielsen factor Π4(zi, ki) invariant

and use them to act on the function I(zi) in order to simplify it. If we explicitly write

Π4(zi, ki) in the cases 4−0, 3−1 and 2−2 we find

Π4−0(zi, ki) = e−α′k1·k2(G12+G34)−α′k1·k3(G13+G24)−α′k1·k4(G14+G23) (5.54)

Π3−1(zi, ki) = e−α′k1·k2(G12+GT
34)−α′k1·k3(G13+GT

24)−α′k1·k4(GT
14+G23) (5.55)

Π2−2(zi, ki) = e−α′k1·k2(G12+G34)−α′k1·k3(GT
13+GT

24)−α′k1·k4(GT
14+GT

23) (5.56)

where GT (z12) = G(z12+1/2). We note that 4−0 and 2−2 are invariant under permutations

gu = (1↔3
2↔4) gt = (1↔4

2↔3) gs = (1↔2
3↔4) (5.57)

The symmetry group is Z2 × Z2. This permutations are also symmetries of the 4−0 and

2−2 measures. In the 2−2 case that is evident. To see this in the 4−0 case, we express zi
in terms of the variables αi and the Koba-Nielsen factor becomes

Π4−0(αi, ki) = e−α′k1·k2(G(α1)+G(α3))−α′k1·k3(G(α1+α2)+G(α2+α3))−α′k1·k4(G(α2)+G(α4)) (5.58)
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In terms of αi the permutations that leave the measure invariant are generated by

gs : α1 ↔ α3 , gu : α2 ↔ α4 , gt : α1 ↔ α3, α2 ↔ α4 (5.59)

In the 3−1 case there are no common permutations between the measure and Π3−1.

Recalling the result (5.45) for the four-point amplitude, using the permutation property

for the cases 4−0 (including the un-oriented case) and 2−2 we can identify some Y functions

with one another:

Y34 ∼ Y12 Y24 ∼ Y13 Y23 ∼ Y14 (5.60)

and find a simpler expression for (5.45)

A1-loop
4 [1−,2−,3+,4+] (5.61)

=
α′4g4s
8

F 4

∫ ∞

0

dT

T

∫
dµ(4)

[
4FN+EN (Y12+Y34−Y13−Y24−Y14−Y23)

]
Π4(zi, ki)

The contribution of the odd spin structure vanishes. In the 3−1 case no further simplifi-

cation of (5.45) seems possible.

5.5 Factorization

In string theory, OPE of vertex operators produce singularities that are related to factor-

ization of the amplitudes on both massless and massive poles in intermediate channels.

In sectors with N = 4 susy no massless poles are expected to be exposed in two-particle

channels of 4-point amplitudes, since 2- and 3-point ‘amplitudes’ of massless states do not

receive quantum corrections. For four-point amplitudes, in sectors with N = 1, 2 susy, one

may expect factorization into sub-amplitudes of massless vectors connected by massless or

massive propagators. However since the function Y has no poles, the four-point one-loop

amplitude doesn’t seem to factorize into two- and three-point one-loop sub-amplitudes

of massless states but can only expose massive poles for generic values of the modular

parameter T . Indeed, the series expansion of Y(z) produces

Y(z) = −8

(
η1 +

2π

T

)
− 8

(
T 2

10
(η2 + 3η21) + η1T + π2

)
ν2 +O(ν4) (5.62)

In order to exposed singular behaviours associated to massless open and closed string

states one has to consider the boundaries of the moduli space in T , capturing the UV

(T = 0) and IR (T = ∞) limits, we will address this issue after an interlude on ‘regular’

branes, that give rise to super-conformal theories in the low energy limit [15, 16].

5.6 Caveat

Although our results for 4-point one-loop amplitudes look perfectly consistent in that they

satisfy the expected Ward identities for gauge invariance and supersymmetry and show

no ‘unphysical’ singularities (violation of unitarity), additional subtleties may occur in the

cases with reduced N = 1, 2 supersymmetry.10 In contrast to the maximally supersym-

metric N = 4 case, due to the presence of fermionic propagators Sij in the integrand,

10We would like to thank the anonymous referee for pointing out this issue.
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singularities in vanishing three-particle Mandelstam invariants such as s123 = k24 = 0 may

be exposed using a regulator that relaxes momentum conservation, following the pioneering

paper by Minahan on one-loop beta functions in heterotic compactifications [33]. Consis-

tency of the procedure would require imposing
∑

i<jsij = 0. Yet finite contributions,

resulting from s123/s123 = 1 may appear that are completely absent in our approach. We

believe that these finite contributions may be an artefact of the procedure that, though

perfectly justified for 2- and 3-pt scattering amplitudes, that would vanish due to collinear

kinetics for mass-less external states preventing any form of ‘scattering’, is un-necessary

in the 4-point case. In order to clarify this issue, one should carefully analyse further con-

straints on the 4-pt amplitudes such as their field-theory limit. This is beyond the scope of

the present investigation. We would like to add that even in case the relevant field-theory

limit of our amplitudes showed a finite discrepancy of the form α′/α′ = 1 with available

field theory results at one-loop, one can put the blame on higher spin states running in

the loop that are obviously absent in standard field theories. In fact one could reverse

the argument upside down or inside out and use loop corrections to probe string effects.

Agreement with the field theory limit is only guaranteed at tree-level.

6 Regular branes and super-conformal theories

So far we have not specified the open string vacuum configuration around which the vector

boson scattering amplitude is computed. For illustrative purposes, we would like to focus

on the simple but very interesting case of regular branes at a Zn orbifold singularity [15, 16].

For given n there might be several inequivalent choices (in fact at least two i.e. (1,-1,0)

and (1,1,-2)) for the action of the Zn on the three complex (six real) transverse coordinates

ZI ≈ ωhI
n ZI , with ωn = exp(2πi/n) and h1 + h2 + h3 = 0 (mod n). There are n different

kinds of fractional branes transforming according to the n irreducible (one-dimensional)

representations of Zn. The low-energy dynamics is governed by a quiver field theory with

n nodes, corresponding to the n gauge groups, and matter in bi-fundamental or adjoint

representation, represented by arrows connecting the nodes.

N regular branes are collections of the same numberN of fractional branes of each kind.

The resulting gauge group is U(N)n. At low energies, i.e. in the IR, the ‘anomalous’ U(1)’s

decouple and the dynamics is governed by a super-conformal field theory. The discrete

Wilson line, representing the embedding of Zn in the Chan-Paton group is given by

γ = ⊕n−1
h=0ω

h
n1N×N (6.1)

so much so that

tr(γℓ) = 0 ∀ℓ 6= 0 (6.2)

This is enough to guarantee that planar amplitudes for the states Φ(0) surviving the orbifold

projection be identical to the ones for N D3-branes in flat space-time and vanish for the

states that have been projected out [15, 16].
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6.1 Tree level, disk

This is obviously true at tree level where the amplitudes are given by

Adisk
r =

1

nr

n−1∑

hi=0

tr(γh1Φ1γ
h2Φ2 . . . γ

hrΦr)

=
1

nr

n−1∑

hi=0

tr(γh1Φ1γ
−h1γh1+h2Φ2 . . . γ

hrΦr)

=
1

nr

n−1∑

hi=0

tr(γh1Φ1γ
−h1γh1+h2Φ2γ

−h1−h2γh1+h2+h3 . . . γhrΦr)

=
1

nr

n−1∑

hi=0

tr(γh1Φ1γ
−h1γh1+h2Φ2γ

−h1−h2 . . . γ
∑

i hiΦrγ
∑

i hiγ−
∑

i hi)

= tr(Φ
(0)
1 Φ

(0)
2 . . .Φ(0)

r )

(6.3)

At one-loop only N = 4 sectors contribute, N = 1 and N = 2 sectors give zero, since

for the latter the ‘empty’ boundary would contribute tr(γℓ) = 0. At higher loop, the b−1

‘empty’ boundaries would contribute
∏b−1

i=1 tr(γ
ℓi) = 0 unless ℓi = 0 for all i = 1, . . . b− 1.

Let us consider four-point amplitudes at one-loop.

6.2 Planar amplitudes

Let us consider first the planar 4−0 case. For a given color ordering one has

A1−loop
4−0 =

1

n

n−1∑

h=0

tr(γht1t2t3t4)tr(γ
h)A(h)

4−0 (6.4)

Vector bosons have both ends on the same kind of fractional brane, let us say the ℓ-th. For

this choice

A1−loop
4−0 =

N

n
trℓ(t1t2t3t4)

n−1∑

h=0

ω(ℓ+1)h
n A(h)

4−0 (6.5)

The situation is more involved for un-oriented and non-planar amplitudes, that are however

suppressed at large N [15, 16].

6.3 Non-planar amplitudes

Non-planar amplitudes differ in principle from the ones in the parent N = 4 the-

ory, since the contributions of N = 1 and N = 2 sectors with h 6= 0 weighted by

tr(γℓit1 . . .)tr(γ
ℓ′it′1 . . .) are generically non-zero. Let us focus on the two cases 2−2 and

3−1 in turn.

In the 2−2 case one has

A1−loop
2−2 =

1

n

n−1∑

h=0

tr(γht1t2)tr(γ
ht3t4)A1−loop

2−2,h (6.6)
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In the 3−1 case one has

A1−loop
3−1 =

1

n

n−1∑

h=0

tr(γht1t2t3)tr(γ
ht4)A1−loop

3−1,h (6.7)

Factorization on massless intermediate closed string states accounts for the gen-

eralised Stückelberg mechanism giving mass to the anomalous U(1)’s for which

tr(γhta) 6= 0 [32, 43–48].

6.4 Un-oriented amplitudes

The presence of Ω-planes tends to generate local tadpoles that require a net number of

fractional branes, whenever n 6= 1. In the case of N D3’s in flat space-time, there are 4

different kinds of Ω3-planes one can add, depending on the quantised values of B2 and

C2 [49–51]: Ω3− leading to SO(2N), Ω̃3
−
leading to SO(2N + 1), Ω3+ leading to Sp(2N),

Ω̃3
+

leading to Sp(2N)′ (with ϑ′ = ϑ + π). Only Ω3− and Ω3+ admit a perturbative

world-sheet description as the one used in the present analysis.

For D3’s at orbifold singularities one can balance the tadpole contribution of the Ω-

planes with the contribution of flavour branes [52]. The prototypical example is N D3’s at

the un-oriented C/Z2 singularity with 4 D7’s and an Ω7− [53]. The low energy dynamics

is governed by and N = 2 SCFT with gauge group Sp(2N) and 8 (half) hypermultiplets

in the fundamental 2N and one hypermultiplets in the anti-symmetric skew-traceless ten-

sor representation N(2N−1). The global symmetry is SO(8). The spectra and vacuum

configurations of un-oriented N = 1 (super-conformal) quiver theories with flavour sym-

metries have been studied in some details in [52]. In principle one can study scattering

amplitudes along the lines of the present analysis or even include the effect of closed-string

fluxes leading to mass deformations of the quivers [54]. We refrain to do so here.

7 UV and IR behaviours

In this section we will analyse the potential divergences of the 1-loop amplitudes. We are

interested in studying such conditions as tadpole cancellation under which the amplitudes

are finite. The amplitude we computed assume the schematic form

A1-loop
N = FN

∫ ∞

0

dT

T
Φ(T )

∫
dµ(N) f(νi, T )Π4(νi, ki, T ) (7.1)

where Φ represents F , E or C. For open strings the limits T → 0 and T → ∞ encode

respectively the UV and the IR behaviours. Using modular transformations one can trans-

form one-loop open-string amplitudes (direct channel) into tree-level closed-string exchange

amplitudes (transverse channel) [26, 37–40].

7.1 Bosonic propagators

In all cases we must manipulate Koba-Nielsen factors and study their limits. To this end

we need to study the limiting behaviours of the bosonic propagator on the annulus and the

Möbius strip.
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7.1.1 Direct channel

For the annulus the propagator between two points, z1 = τν1 and z2 = τν2+x, is given by

GA(τν1, τν2 + x) = −2 log
θ1(τν12 + x)

θ′1(0)
+ 2πν212Im τ (7.2)

where x = 0, 1/2 correspond to insertions on the same or different boundaries, respectively.

For x = 0, the logarithmic derivative of θ1 yields

θ1(z|τ)
θ′1(0|τ)

=
sinπτν

π

∞∏

n=1

(1− qn+ν)(1− qn−ν)

(1− qn)2
=

i

π
q−ν/2

∞∏

n=1

(1− qn+ν−1)(1− qn−ν)

(1− qn)2
(7.3)

where q = e2πiτ . We find convenient to define the functions

h±(ν, τ) =
∞∏

n=1

1± qn+ν−1

1− qn
1± qn−ν

1− qn
(7.4)

that satisfy h±(1 − ν) = h±(ν). For x = 1/2 h+ gets replaced by h−. The propagators

become

GA(τν1, τν2) = −2 log

(
i

π
q−ν12(1−ν12)/2h−(ν12)

)

GT
A(τν1, τν2) = −2 log

(
1

π
q−ν12(1−ν12)/2h+(ν12)

)
(7.5)

that are invariant under ν ↔ 1 − ν in both cases. Using similar manipulations one can

easily obtain the propagator on the Möbius strip

GM(τν1, τν2) = −2 log

(
i

π
q−ν12(1−ν12)/2h−(ν12)e

−
iπν212

2

)
(7.6)

7.1.2 Transverse channel

The transverse channel description results from the modular transformation S for the

annulus and P = TST 2S for the Möbius-strip [26, 37–40]. Denoting by τ̃ the transformed

modular parameter, one has

z̃A =
z

τA
, τ̃A = − 1

τA
and z̃M =

z

2τM − 1
, τ̃M =

τM − 1

2τM − 1
(7.7)

Defining ℓ = 2/T and parametrizing z = x+ iκTy/2 and τ = iκT/2+ (κ− 1)/2 (κ = 1 for

the annulus and κ = 2 for the Möbius strip), one finds

τ̃A = iℓ , z̃A = y − ixℓ and τ̃M =
1

2
+

iℓ

4
, z̃M =

1

2
(y − ixℓ) (7.8)

Under these transformations the propagator gets shifted by a function of τ . In the Koba-

Nielsen factor, the shift is innocuous as it cancels thanks to momentum conservation.

On the transverse annulus, the propagator for points on the same boundary reads

GA(ν1, ν2|τ̃) = −2 log
θ1(ν12|τ̃)
θ′1(0|τ̃)

= −2 log

[
sinπν12

π
g−(ν12)

]
(7.9)
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where

g±(ν, τ) =
∞∏

n=1

1± e2πiνqn

1− qn
1± e−2πiνqn

1− qn
(7.10)

For points on different boundaries, θ1 gets replaced by θ2:

GA(ν1, ν2 + 1/2|τ) = GT
A(τν1, τν2|τ) = −2 log

θ2(ν12)

θ′1(0)
+ 2πν212Im τ (7.11)

Under S modular transformations the propagator becomes

GT
A(ν1, ν2|τ̃) = −2 log

θ2(ν12|τ̃)
θ′1(0|τ̃)

= −2 log
[cosπν12

π
g+(ν12)

]
(7.12)

For the Möbius strip the propagator is

GM(ν1, ν2|τ̃M) = −2 log

[
sinπν12/2

π
g+

(ν12
2

, τ̃M

)]
(7.13)

7.2 Functions FN , EN , CN and Y

In addition to the propagators, one needs the limiting behaviours of the functions FN ,

EN , CN and Y. For simplicity we will only consider configurations of branes at orbifold

singularities, in particular ‘regular’ branes [15, 16], thus we can set εIab = 0 in uIab.

7.2.1 N = 4 sectors

It is easy to see that EN=4 = 0 due to Riemann identity. For the same reason FN=4 is

simply proportional to Λ(6)/T 2 with

Λ(6) =
∑

{p}

e−2πIm τα′p2/R2
(7.14)

for D9-branes. Using Poisson resummation, for a lattice with dimension 2r one finds

Λ(2r)(τ2) =

(
2α′τ2
R2

)r

Λ(2r)(τ−1
2 ) (7.15)

Using T-duality along all 6 internal directions one gets D3-branes and the lattice sum

becomes

Λ
(6)
D3 =

∑

{w}

e−2πIm τw2R̃2/α′

(7.16)

Introducing a non zero separation ∆x between the D3-branes one can regularize IR diver-

gences. ∆x is related to the mass of the lowest states by ∆x = α′M . The separation ∆x can

be chosen in many ways in the N = 4 sector: the branes are parallel in all the six compact

dimension thus they can be displaced along one, two or three complex dimensions Ds.

Λ
(6)
D3 =

∑

{w}

e−2πIm τ(wR̃+∆x)2/α′

, Λ
(6)
D9 =

∑

{p}

e−2πIm τα′(p+a)2/R2
(7.17)
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where the second formula is for the D9-branes description with a the Wilson line related to

branes’ separation by ∆x = aα′/R. In the limit T → ∞ the behaviour of Λ(6) is dominated

by the exponential

Λ
(6)
D9

T→∞−−−−→ bpe
−2πα′Im τ minp(p+a)2/R2

(7.18)

where bp accounts for possible degeneracies. For |a| < 1/2 the minimum corresponds to

p = 0 and its value is M2. In the transverse channel the limit ℓ → ∞ produces

Λ
(6)
D9 =

∑

{p}

e−2πα′(p+a)2/ℓR2 l→∞−−−→
(
ℓR2

2α′

)3

(7.19)

In the partial decompactification limit R → ∞ with separation along Ds directions, one has

Λ(6) =
V6

(2πα′Im τ)3−Ds
e−2πα′Im τM2

(7.20)

where V6 is the regulated volume of R6. The limits in this case yield

Λ
(6)
D9(R = ∞)

T→∞−−−−→ V6

(πα′T )3−Ds
e−πα′TM2

, Λ
(6)
D9(R = ∞)

ℓ→∞−−−→ V6

(
ℓ

2πα′

)3−Ds

(7.21)

In conclusion the limits of FN=4 produce

FN=4
T→∞−−−−→ 1

4nα′2

(2π)4

T 2
e−πα′TM2

, FN=4
ℓ→∞−−−→ (2π)4

1

4nα′2

ℓ2

κ4

(
ℓR2

2α′

)3

(7.22)

7.2.2 N = 2 sectors

In this case EN=2 is non-zero, in fact

FN=2 = −EN=2P(u) EN=2 = (2π)2XN=2 =
(2π)2Λ(2)(τ)I(4)

4n(2α′Im τ)2
(7.23)

I(4) is a constant in the limits ℓ, T → ∞, Λ(2) is substantially equal to Λ(6) with the

restriction that brane separation can take place only along one complex direction.

Λ
(2)
D9

T→∞−−−−→ e−2πα′Im τM2
Λ
(2)
D9

l→∞−−−→ ℓR2

2α′
(7.24)

In the amplitudes terms like EN=2, often appear in combination with Weierstrass P function

or the function Y.

Let us focus first on the P(z, τ) and consider z = x + iyτ2 (τ2 = Im τ ∝ T ) with

y = 0 and y 6= 0. The variable z can either play the role of uIab = hvIab or of a world-sheet

coordinate. In general z = iτ2ν + (1/2). Anyway the in front of iτ2 is a real number

between zero and one. Expanding Weierstrass function as a power series in q yields

P(z, τ) =
π2

sin2 πz
− π2

3
+ 8π2

∞∑

n=1

∑

dn|n

qndn [1− cos(2πdnz)] (7.25)
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where dn are the divisors of n. In the limit T → ∞ the cosines diverge as e2πτ2dny, but this

contribution is suppressed by qn ∼ e−2πτ2n since dny < n,

P(z, τ)
T→∞−−−−→ π2

sin2 πz
− π2

3
→




−π2/3 if y 6= 0

π2/ sin2(πx)− π2/3 if y = 0
(7.26)

In the limit ℓ → ∞ Weierstrass function becomes

P(z, τ) = τ̃2P(z̃, τ̃)
ℓ→∞−−−→ τ̃2

(
π2

sin2 πz̃
− π2

3

)
→ −ℓ2π2

κ4

{
−1/3 if x 6= 0

1/ sin2(πy/κ)− 1/3 if x = 0

(7.27)

Let us now consider the function Y only in the case y > 0 and x = 0, 1/2. We need

S(z) and the series expansion of ∂z log θ1:

∂z log θ1(z|τ) =
θ′1(z|τ)
θ1(z|τ)

= π cot(πz) + 4π
∞∑

n=1

∑

dn

qn sin(2πdnz) (7.28)

The limits T → ∞ and ℓ → ∞ produce

S(z, τ)
T→∞−−−−→

{
−iπy (1/|y|+2) if y 6=0

1/x if y = 0, x→0

S(z, τ)
ℓ→∞−−−→ iπℓ

κ2

{
2i if x = 1/2

cotπy/κ if x = 0
(7.29)

Now it’s easy to compute the limits for the functions EN , FN and Y(z) that read

EN=2
T→∞−−−−→ I(4)

4nα′2

4π2

T 2
e−πα′TM2

, (7.30)

EN=2
ℓ→∞−−−→ I(4)

4nα′2
π2ℓ2

ℓR2

2α′
(7.31)

FN=2
T→∞−−−−→ I(4)

4nα′2

4π4

T 2

(
1

sin2(hπv)
− 1

3

)
e−πα′TM2

, (7.32)

FN=2
ℓ→∞−−−→ −ℓ2π2

κ4
I(4)

4nα′2

π2ℓ2

3

ℓR2

2α′
(7.33)

Y(z)
T→∞−−−−→ −4π2

(
1

3
+ 2|y|(1 + |y|)

)
, Y(z)

ℓ→∞−−−→ ℓ2π2

κ4

{
11 if x = 1/2

2 if x = 0
(7.34)

7.2.3 N = 1 sectors

This is the most laborious case, one needs to study the function

H(z) =
3∏

I=1

θ1(z + uIab) (7.35)

since FN=1 and EN=1 are given by

FN=1 = EN=1

(
1

6

H′′′(0)

H′(0)
+ 3η1

)
EN=1 = 2π

H′(0)

H(0)
XN=1 (7.36)
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Let us start with EN=1, the ratio H′/H can be seen as a sum of logarithmic derivatives

H′(0)

H(0)
=

∑3
I=1∂z log θ1

∣∣
z=uI

(7.37)

It is easy to see that this function is a modular form of weight one. In the limits the q-series

vanish thus only cotangents remain in the direct channel

H′(0)

H(0)

T→∞−−−−→ π
∑

I cot(πvIh) (7.38)

In the transverse channel one has

H′(0)

H(0)

ℓ→∞−−−→ iπℓ

κ2
∑

I cot(πuI) → −πℓ

κ2
∑

I
uI

|uI |
(7.39)

FN=1 is even more laborious to analyse

FN=1 = 2π

(
1

6

H′′′(0)

H(0)
+ 3η1

H′(0)

H(0)

)
XN=1 = 2πΦ(uI)XN=1 (7.40)

One can expand the expression in brackets using the logarithm derivatives of θ1, that we

call φ(z|τ) = ∂z log θ1(z|τ) for brevity:

Φ(uI) =
∏

I

φ(uI) +
1

2

∑

I1 6=I2

φ(uI1)
(
φ′(uI2) + φ2(uI2)

)

+
1

6

∑

I

(
φ′′(uI) + 3φ′(uI)φ(uI) + φ3(uI)

)
+ 3η1

∑

I

φ(uI)

(7.41)

Under modular transformations the functions φ(z) and η1 are modular forms of weight

one and two, respectively. The function Φ(z) is a modular form of weight three. The limit

T → ∞ of Φ(uI) can be computed similarly to H′/H and the limit ℓ → ∞ in the transverse

channel can be taken using Φ(u) = τ̃3Φ(ũ)

Φ(z)
T→∞−−−−→ π3

(
∏

I

cot(hπvI)−
2

3

∑

I

cot(hπvI)

)
, Φ(z)

l→∞−−−→ −i

(
iπℓ

κ2

)3∑

I

uI
|uI |
(7.42)

In the N = 1 case the function CN also appears that has a simple form. For future

use, we list here all the limits

EN=1
T→∞−−−−→ I(6)

4nα′2

2π2

T 2

∑

I

cot(hπvI), (7.43)

EN=1
ℓ→∞−−−→ − I(6)

4nα′2

π2

2

ℓ3

κ2

∑

I

uI
|uI |

(7.44)

FN=1
T→∞−−−−→ I(6)

4nα′2

2π4

T 2

[
∏

I

cot(hπvI)−
2

3

∑

I

cot(hπvI)

]
, (7.45)

FN=1
ℓ→∞−−−→ − I(6)

4nα′2

π4ℓ5

2κ6
∑

I
uI

|uI |
(7.46)

CN (T ) = −cGSO
1 I(6)

4nα′2

2π2

T 4
, CN (ℓ) = −cGSO

1 I(6)

4nα′2

ℓ4π2

8
(7.47)
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7.3 Two- and three-point ‘amplitudes’

We now have all the tools to compute the UV and IR limits of two- and three-point

‘amplitudes’.

In N = 4 sectors both amplitudes are zero because EN=4 = 0. This is an expected

result in fact in D = 4 SYM N = 4 theory has a vanish β function and no threshold

corrections to the gauge kinetic function.

Let us start with the two-point ‘amplitude’ that reads

A1-loop
2 [1+, 2+] =

g2sα
′2

2
[12]2

∫ ∞

0

dT

T
(EN + iCN=1)

∫
dµ(2) e−α′k1·k2G12 (7.48)

Despite analytic continuation of momenta, k1·k2 = 0 thus the integral over the world-sheet

insertions gives (iT/2)2. For this reason the color-ordered amplitude is the same in the

planar and non-planar cases, they differ in the Chan-Paton factor. In the IR limit in N = 2

sectors one has a logarithmic divergence due to Λ(2)

A1-loop
2 [1+, 2+]

T→∞−−−−→ −g2s
π2R2I(2)

8α′n
[12]2 logL (7.49)

One can regularize IR divergences introducing brane separation in the amplitude

A1-loop
2 [1+, 2+]

T→∞−−−−→ −g2s
π2I(2)

8n
[12]2

∫ ∞ dT

T
e−πα′TM2

(7.50)

In the N = 1 case there are no directions to separate the branes and the integral over T

diverges logarithmically

A1-loop
2 [1+, 2+]

T→∞−−−−→ g2s
π2I(6)

n
[12]2

∑
I cot(hπvI) logL (7.51)

where L is the IR cut-off. We note that the odd spin structure does not contribute to

the limit.

In the transverse channel we treat separately planar and un-oriented amplitudes, re-

lated to massless tadpoles and their cancellation, and the non-planar amplitude, related to

the masses of anomalous U(1) vector bosons. For momentum conservation k1·k2 = 0 and

the integral on the world-sheet in the direct channel produces −T 2/4 in any case, while in

the transverse channel it gives −1/ℓ2 in the planar and non-planar case and −16/ℓ2 in the

un-oriented case. Summing planar and un-oriented contributions produces

A1-loop
2−0 (1+, 2+) = −g2sα

′2

2
[12]2

[
tr(γh)tr(t1t2γ

−h) + 32tr(t1t2W
Ω
2h)

] ∫ ∞

0

dℓ

ℓ3
(EN + iCN=1)

(7.52)

where in the integral over ℓ, the measure descends from τ = τA = iℓ. In the non-planar case

A1-loop
1−1 (1+, 2+) = −g2sα

′2

2
[12]2tr(γht1)tr(t2γ

−h)

∫ ∞

0

dℓ

ℓ3
(EN + iCN=1) (7.53)

The behaviour of both amplitudes is coded in color-ordered amplitudes, their limit in the

direct channel for N = 2 sectors reads

A1-loop
1−1 [1+, 2+]

ℓ→∞−−−→ −g2s [12]
2 I

(4)

4n

π2

2

R2

2α′
L (7.54)
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where L is the IR cutoff. In N = 1 sectors the limit is dominated by the contribution of

the odd spin structure

A1-loop
1−1 [1+, 2+]

ℓ→∞−−−→ ig2s [12]
2 c

GSO
1 I(6)

4n

L2π2

32
(7.55)

Let us now consider the (color-ordered) three-point amplitude with helicities (−++)

that reads

A1-loop
3 [1−, 2+, 3+] = − i√

2
gsα

′2 [23]3

[12][31]

∫ ∞

0

dT

T
(EN − iCN=1)α

′k2·k3
∫

dµ(3)S23Π3(zi, ki)

(7.56)

As for two-point amplitudes N = 4 sectors do not contribute. The form of the color-

ordered amplitude is different in the planar and non-planar cases. Actually there are two

non-planar cases: one with 2+ and 3+ in the second boundary, that we call 1−2, and one

with 1− and 2+ in the first boundary, that we call 2−1.

Let us focus on the world-sheet integral, that we need to compute for ki·kj → 0. In

the planar case, using the variables α1 = ν12, α2 = ν23 and α3 = 1− ν3 one gets

∫
dµ

(3)
123Π3(zi, ki) (7.57)

= τ3
∫

dα1dα2dα3 δ(
∑

i αi − 1)α′k2·k3S(α2τ)e
−α′k1·k2G(α1τ)−α′k2·k3G(α2τ)−α′k1·k3G(α3τ)

In this form it is not clear what happens when α2 → 0 and k2·k3 → 0. As in [33], if we call

ε = k2·k3, when ε → 0 the leading term is finite

lim
ε→0

(
iT

2

)2 ∫
dα1dα3 δ(1− α1 − α3)e

−α′k1·k2G(α1τ)−α′k1·k3G(α3τ)

∫
dα2ε(α2)

ε−1 (7.58)

As a result the integral gives (iT/2)2. This holds true for A1-loop
1−2 [1−, 2+, 3+] too, in fact

using the parametrization β1 = ν1, β2 = ν23 and β3 = 1 − ν3 yields a similar integral. In

the case A1-loop
2−1 [1−, 2+, 3+], the amplitude does not exhibit the kinematical pole. This is

in line with the Chan-Paton factor that does not involve the structure constants fabc but

rather a product of a δ for 1 and 2 combined with an anomalous U(1) factor for 3. The

kinematical factor in the numerator does not cancel and makes this IR contribution vanish.

In the direct and transverse channel, the behaviour of the amplitude is very similar

to the two-point amplitude in fact EN appears in the both cases. The world-sheet integral

give us the same contribution in terms of modular parameter T (or ℓ). This should be

interpreted in terms of the running of the field-dependent gauge couplings [32] and is to be

expected as a result of supersymmetry Ward identities that only allow the super-invariant

W 2 for 2- and 3-point amplitudes, barring anomalous U(1)’s.

7.4 Four-point amplitude, 4−0

Let us now study the limiting behaviours of 4-point amplitudes. In the direct channel,

relying on u = −s − t, the Koba-Nielsen factor can be rewritten in terms of the variables
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αi as

Π4−0 =exp

[
α′s

2
[G(α1)+G(α3)−G(α1+α2)−G(α2+α3)]

+
α′t

2
[G(α2)+G(α4)−G(α1+α2)−G(α2+α3)]

]
(7.59)

Inserting in this expression the explicit form of the propagator found in the previous section,

the α-independent terms cancel and using α1+α2+α3+α4 = 1 many terms simplify so that

Π4−0(αi, ki) =

[
h−(α1)h−(α3)

h−(α1 + α2)h−(α2 + α3)

]−α′s

×
[

h−(α2)h−(α4)

h−(α1 + α2)h−(α2 + α3)

]−α′t

q−α′(sα2α4+tα1α3)

(7.60)

In the limit T → ∞, q → 0 all the functions h(α) → 1 while the s, t dependent q-

exponential, using the saddle point method, behaves as

∫
d4αδ(1−∑

α)eπTα′(sα2α4+tα1α3) T→+∞−−−−−→ e
πTα′st
4(s+t) (7.61)

In the physical region s > 0, t < 0 (in the Regge limit |s| ≫ |t|), with this condition the

exponent is −πTα′|t|/4 thus the integral on T is always convergent in the limit T → ∞.

As in [55], if we expand the functions h− in powers of q. The form of the exponential

suggests that one can interpret the modulus T as a Schwinger parameter and the integral

over the variables αi as a Feynman parametrization of a box integral. The string amplitude

can be seen as an infinite sum of massive box amplitudes.

In the transverse channel we find the usual tadpole, in fact we can obtain the same

world-sheet integral rescaling the world-sheet coordinate on the Möbius strip by a factor

of two and obtaining a 24 factor from FN or YEN . In the limit ℓ → ∞ the Koba-Nielsen

factor reduces to products or ratios of sines

A1-loop
4−0 [1−, 2−, 3+, 4+]

ℓ→∞−−−→ g4sα
′4

2
F 4

∫ ∞

0

dℓ

ℓ

(
FN − π2ℓ2

κ4
EN

)

∫
dµ

(4)
1234

[
sinπα1 sinπα3

sinπ(α1 + α2) sinπ(α2 + α3)

]−α′s [ sinπα2 sinπα4

sinπ(α1 + α2) sinπ(α2 + α3)

]−α′t

(7.62)

In the ℓ → ∞ limit, it is useful to define a combination of F and E and evaluate its limit

in the various sectors N = 1, 2, 4

(
2FN + a

π2ℓ2

κ4
EN

)
ℓ→∞−−−→ π4

4nα′2

ℓ2

κ4





16(ℓR2/2α′)3 if N = 4

(a− 2/3)I(4)ℓ2(ℓR2/2α′) if N = 2

−(2 + a)
ℓ3I(6)

2κ2
∑

I
uI

|uI |
if N = 1

(7.63)
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In the 4−0 case a = −2, thus the contribution to the amplitude from N = 1 sectors

vanishes in the limit.

The world-sheet integral can be rewritten as a derivative of the Veneziano-like ampli-

tude w.r.t. the string tension as in [22]

∫
dµ

(4)
1234

[
s1s3

s1+2s2+3

]−α′s [ s2s4
s1+2s2+3

]−α′t

= − 1

2π2

∫ 1

0

(
log x

1−x
+

log(1−x)

x

)
x−α′s(1−x)−α′t

(7.64)

As shown in [22], the one-loop dilaton tadpole is proportional to the logarithmic derivative

of the tree level amplitude with respect to the (inverse) tension α′.

7.5 Four-point amplitude, 2−2

In this case one has two independent color-ordered amplitudes, in fact fixing legs 1 and

2 on a boundary and legs 3 and 4 on the other boundary, one has A1-loop
2−2 [1−, 2−, 3+, 4+]

and A1-loop
2−2 [1+, 2−, 3−, 4+]. In the direct channel we have the same limits, N = 2, 4 is

regularized by brane separation and N = 1 by momentum flow.

In the transverse channel, one has a behaviour similar to 4−0, the unique changes

affect the value of the parameter a that we have defined in the equation (7.63): for

A1-loop
2−2 [1−, 2−, 3+, 4+] one has a = −20 while for A1-loop

2−2 [1+, 2−, 3−, 4+] a = −2 again,

thus the last amplitude vanishes for N = 1. For instance, for [1−, 2−, 3+, 4+] one finds

A1-loop
2−2 [1−, 2−, 3+, 4+]

ℓ→∞−−−→ g4sα
′4

4
F 4

∫ ∞

0

dℓ

ℓ

(
2FN + a

π2ℓ2

κ4
EN

)

∫
dµ

(4)
123|4

[
sinπβ1 sinπβ3

cosπ(β1 + β2) cosπ(β2 + β3)

]−α′s [ cosπβ2 cosπ(β1 + β2 + β4)

cosπ(β1 + β2) cosπ(β2 + β3)

]−α′t

(7.65)

where β1 = ν1 − ν2, β2 = 1 − ν1 and similarly for β3 and β4. For [1+, 2−, 3−, 4+] one can

easily adapt the formula.

7.6 Four-point amplitude, 3−1

The non-planar amplitude 3−1 has a unique independent color-ordered amplitude, A1-loop
3−1

[1−, 2−, 3+, 4+] with the leg 4 on the second boundary.

In the transverse channel, the contribution CN of the odd spin structure dominates in

limit ℓ → ∞ and one gets

A1-loop
3−1 [1−, 2−, 3+, 4+]

ℓ→∞−−−→ g4sα
′2

8
π4 c

GSO
1 I(6)

4n

9

8
F 4

∫ ∞

0

dℓ

ℓ
ℓ5

∫
dµ

(4)
123|4

[
sinπβ1 cosπβ3

sinπ(β1 + β2) cosπ(β2 + β3)

]−α′s [ sinπβ2 cosπβ4
sinπ(β1 + β2) cosπ(β2 + β3)

]−α′t

(7.66)
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8 Supersymmetry vs Hybrid formalism

As we have checked that the 4-point amplitudes in the RNS formalism are MHV, thus

satisfying the expected SUSY Ward identities, we can super-symmetrize them.

In the N = 1 case, the relevant super-invariant is W 2W̄ 2 where Wα = 1/2D̄2DαU is

the linearised super-field strength of the vector multiplet described by a real scalar super-

field U . The full N = 1 super-amplitude would read

AN=1
4-pt =

∫
d2ϑd2ϑ̄{(W1W2)(W̄3W̄4)ABose

4−pt + perms} (8.1)

In addition to 4 vector boson amplitudes A(−,−,+,+), it encodes also 2 vector 2 gluino

amplitudes A(−1/2,−,+1/2,+) and 4 gluino amplitudes A(−1/2,+1/2,−1/2,+1/2). A

direct computation of the one-loop amplitude with 2 or 4 gluini looks quite laborious since

in addition to the vertex operator in the ‘canonical’ -1/2 super-ghost picture

V
(−1/2)
F = uα(k)SαΣe

−ϕ/2eikX (8.2)

where Σ is the internal spin field with R-charge +3/2, one should use also the vertex in

the higher +1/2 picture

V
(+1/2)
F = uα(k)∂Xµσ

µ
αα̇C

α̇Σe+ϕ/2eikX + . . . (8.3)

In the N = 2 case, the relevant super-invariant is again W2W̄2 where now W is the

chiral super-field describing N = 2 vector multiplets. The full N = 2 super-amplitude

would read

AN=2
4-pt =

∫
d4ϑd4ϑ̄{(W1W2)(W̄3W̄4)ABose

4−pt + perms} (8.4)

In addition to 4 vector boson amplitudes, it encodes also 2 vector 2 gluino amplitudes

A(−1
2 ,−,+1

2 ,+), 4 gluino amplitudes A(−1/2,+1/2,−1/2,+1/2), 2 vector 2 scalar am-

plitudes A(−,+, 0, 0), 2 gluino 2 scalar amplitudes A(−1/2,+1/2, 0, 0) and 4 scalar ampli-

tudes A(0, 0, 0, 0). Once again a direct computation of the one-loop amplitudes with gluini

looks more involved, while amplitudes with scalars look feasible, since the vertex operator

for scalars in vector multiplets are simply

Vφ = φ(k)(i∂Z3 + k·ψΨ3)e
ikX (8.5)

where Z3 is the complex ‘untwisted’ coordinate and Ψ3 its world-sheet super-partner.

Different manifestly supersymmetric formalisms for the quantisation of the superstring

have been proposed, depending on the number of space-time and internal dimensions [11–

14]. The one we will focus on here is suitable for compactifications on Calabi-Yau spaces

or orbifolds, described by internal N = 2 SCFT’s [11]. In the Type II case these yield

N = 2 supersymmetry in D = 4. In the Type I or Heterotic case these yield N = 1

supersymmetry in D = 4. Another one is suitable for compactifications on manifolds with

SU(2) holonomy (e.g. K3 × T2) spaces or orbifolds of T 4, described by internal N = 4

SCFT’s [12]. In the Type II case these yield N = 4 supersymmetry in D = 4. In the Type
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I or Heterotic case these yield N = 2 supersymmetry in D = 4. We will neither deal with

the second approach any further here, nor with the pure spinor formalism [56–59].

We would like to compare our results with those of the hybrid formalism with minimal

supersymmetry in D = 4 [10, 11]. The construction is based on two observations. First one

can twistN = 2 SCFT’s redefining the worldsheet stress tensor T according to T ′ = T−J/2

where J is the U(1) worldsheet current. As a result c′ = 0 and h′ = h − q/2. Second one

can identify the dimension 0 spin fields ϑa = Sae
+ϕ/2 with the Grassmann coordinates of

superspace. The construction works for D = 4 whereby ϑa → ϑα, ϑ̄α̇ denoting by pα, p̄α̇
their dimension 1 conjugate momenta, one has 4 (η, ξ) systems with c = −8 = 4 × (−2).

Including the c = 4 contribution of the bosonic coordinates Xµ and the c = 0 contribution

of the twisted internal N = 2 SCFT, one has a defect ∆c = −4 that can be compensated

by an additional chiral boson ρ with ε = 1 (as for commuting ghosts like ϕ for β, γ),

background charge Qρ = 1 (instead of Qϕ = 2) and central charge c = ε(1 + 3Q2) = +4

(instead of cϕ = 13). After twisting, the mapping of the generators of the twisted N = 2

SCFT read

Thyb = TX+Tϑ+Tρ+TtSCFT = TRNS = TXψ+TSCFT+Tgh , (8.6)

Jhyb = − ∂ρ+JtSCFT = bc+ξη (8.7)

G+
hyb = eρd2 +G+

tSCFT = JBRST , (8.8)

G−
hyb = e−ρd̄2 +G−

tSCFT = b (8.9)

where

dα = pα +
i

2
∂Xαα̇ϑ̄

α̇ − 1

4
ϑ̄2∂ϑα +

1

8
ϑα∂(ϑ̄

2) (8.10)

d̄α̇ = p̄α̇ +
i

2
ϑα∂Xαα̇ − 1

4
ϑ2∂ϑ̄α̇ +

1

8
ϑ̄α̇∂(ϑ

2) (8.11)

Unintegrated (‘c-ghost-number 1’ in a sense) vertex operators for compactification

independent states, such as an open string gauge boson or the closed string graviton, can

be expressed in terms of a real scalar super-field U(x, ϑ, ϑ̄) (or U(x, ϑL, ϑ̄L;ϑR, ϑ̄R) for

closed strings). In order for U to be a world-sheet super-primary it must satisfy D2U =

D̄2U = ∂µ∂
µU = 0. Component fields obtain by acting with super-derivatives. For the

vector boson one has

Aαα̇ = [Dα, D̄α̇]U |ϑ=ϑ̄=0 (8.12)

and for the gaugino one finds

λα =
1

2
D̄2DαU |ϑ=ϑ̄=0 (8.13)

Integrated vertex operators follow the twisting prescription
∫

dzV =

∫
dzG−

hybG
+
hybU =

∫
dzHU (8.14)

where the field-dependent super-differential operator H reads

H = dαD̄2Dα + d̄α̇D
2D̄α̇ + ∂ϑαDα + ∂ϑ̄α̇D̄

α̇ +
i

2
Πα̇α[Dα, D̄α̇] (8.15)
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with Πα̇α = ∂X α̇α−iϑ̄α̇∂ϑα+i∂ϑ̄α̇ϑα. The formalism is manifestly supersymmetric since

dα, d̄α̇ and Πα̇α commute with the space-time supersymmetry generators Qα and Q̄α̇.

Gauge invariance corresponds to δU = D̄2Λ̄+D2Λ = Ω+Ω̄ that adds a total derivative to V .

The ‘topological/twisted’ prescription for computing one-loop Type II scattering am-

plitudes [10] reads

Mn =

∫
d2τ

τ22

∫ n∏

i=1

d2zi

〈(∫
JL ∧ JR

)2

V1V2 . . . Vn

〉
(8.16)

where
∫
JL ∧ JR =

∫
d2w(J tSCFT

L − ∂ρL)(J
tSCFT
R − ∂ρR), constructed from the twisted

U(1) current, is needed to provide the correct number of zero-modes in the large Hilbert

space once translated into RNS fields.

For Type I amplitudes the analogous prescription would be

An =

∫
dT

T

∫ n∏

i=1

dzi

∫
dw1dw2〈J(w1)J(w2)V1V2 . . . Vn〉 (8.17)

As observed in [10] when the external states, such as gauge bosons or gravitons, are

ρ and compactification independent, the internal contribution factorizes and one has to

simply compute contractions of the space-time super-coordinate fields.

Indeed after dealing with subtleties associated to the integration over the chiral boson

ρ one arrives at a manifestly supersymmetric result,

Mn =

∫
d2ϑLd

2ϑ̄Ld
2ϑRd

2ϑ̄R

∫
d2τ

τ62

×
∫ n∏

i=1

d2zi
∂

dζi

∂

dζ̄i

[(∑
ζiW

i
L

)2(∑
ζiW̄

i
L

)2(∑
ζ̄iW

i
R

)2(∑
ζ̄iW̄

i
R

)2

× |:eS :|2 exp
(
− 2π

[
K + i

∑

i

ziki

]2
/τ2

)∏

i<j

|θ1(zij)|ki·kj×

×
∏

i

Ũ(ki, ϑL, ϑ̄L, ϑR, ϑ̄R)

]

ζi=ζ̄i=0

(8.18)

where ζi and ζ̄i are auxiliary Grassmann variables that serve the purpose to select the

multi-linear term in the ‘external polarisations’

Kµ =
∑

i

ζiB
µ
i − iσµ

αα̇

∑

i,j

SijζiζjW
α
i W̄

α̇
j (8.19)

and

S =
∑

i,j

ζiSij(D
α
j W

i
α + D̄α̇

j W̄
i
α̇ − ikµj B

i
µ) +O(ζ2) +O(ζ3) +O(ζ4) (8.20)

whose consistency has been tested at least for the uncompactified case against gauge in-

variance, modular invariance and periodicity and equivalence with the RNS formalism.

The above formula drastically simplifies for n = 4, since all the derivatives with respect

to ζi and ζ̄i must act on the explicit factor not on the exponents and produceW 2
LW̄

2
LW

2
RW̄

2
R.
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One can safely set K = 0 and S = 0 and get the expected result, i.e. the BGS formula for

scattering of Type II super-gravitons in D = 10 written in a notation suitable for N = 2

D = 4, i.e. for ‘compactification independent’ states: N = 2 supergavity {gµν , 2ψµ, Aµ} and
N = 2 dilaton hyper-multiplet {ϕ, bµν , 2ζ, cµν , α}. These are precisely the states that one

gets combining two N = 1 vector multiplets, one for the Left- and one for the Right-movers.

Taking the ‘square root’ of the closed-string result one gets the Type I superstring

super-amplitude

Asuper
n =

∫
d2ϑd2ϑ̄

∫
dT

T 6

∫

R

n∏

i=1

dzi
∂

dζi
(8.21)

[
(ΣiζiW

i)2(ΣiζiW̄
i)2:eS :e−

2π
T

[iK+Σiziki]
2
∏

i<j

|θ1(zij)|ki·kj
∏

i

Ũ(ki, ϑ, ϑ̄)

]

ζi=0

Focussing on the n = 4 case, one can safely set K and S to zero and get

Asuper
n =

∫
d2ϑd2ϑ̄W 2W̄ 2

∫
dT

T 6

∫

R

n∏

i=1

dzie
− 2π

T
[Σiziki]

2
∏

i<j

|θ1(zij)|ki·kj (8.22)

This precisely coincides with our result for the N = 4 sector in the decompactification

limit, where Λ ≈ 1/T 3 (in the absence of an IR regulator) and indeed the internal SCFT

is free and decouples from the space-time part.

Since for N = 1, 2 sectors, the internal contribution does not simply factorize, even

when the external states, such as gauge bosons or gravitons, are ρ and compactification

independent, but rather produce derivatives of the Witten index, we expect the hybrid

approach to fail to give the correct result if not properly amended. The success at tree level

is largely due to the fact that tree-level amplitudes for gluons or gravitons are independent

of the amount of supersymmetry (in so far as only minimal couplings are present) and the

super-symmetrization is unique when the number of supersymmetry is chosen / given.

The probable source of the disagreement with the D = 4 hybrid formalism [10] are the

subtleties in defining the functional integration over the chiral boson ρ.11 The difference

between the N = 1, 2 and the N = 4 contributions to 1-loop amplitudes is that different

numbers of fermionic zero-modes can come from the compactification-dependent part of the

world-sheet action through the term RmnpqΨ
m
LΨn

LΨ
p
RΨ

q
R where Rmnpq is the CY curvature

which couples to the left and right-moving internal fermions Ψm
L and Ψn

R. In the N = 4

sector, there is a cancellation (see eq. (3.2) in [10]) between the functional integral over

the ρ field and over fermionic zero modes coming from the compactification. Probably this

cancellation does not occur in the N = 1 and N = 2 sectors and the coupling of Ψm
L and

Ψn
R through the CY curvature affects the factorization properties.

9 Conclusions

We have shown that the 4-point vector boson amplitudes computed in [1] satisfy the correct

supersymmetry Ward identities in that they vanish for non MHV helicity configurations

11We thank Nathan Berkovits for suggesting this interpretation.
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(++++) and (−+++). In the MHV case (++−−) we have simplified their expressions

to an extremely compact form. The integrands only involve three functions EN , CN=1 and

FN of the relevant modular parameter T , of the brane configuration uIab and the ‘compact-

ification’ moduli, the ubiquitous Koba-Nielsen factor Π(zi, ki) and the non-holomorphic

function Y(zij) = −2[P(zij) − S2(zij)] with no poles in zij . In N = 4 sectors EN=4 = 0

and only FN=4 ≈ Λ‖ plays a role. Somewhat unexpectedly we have found that no massless

poles in two-particle channels are exposed in the N = 1, 2 sectors either, thanks to the

regular behaviour of Y.

We have then studied the limiting IR and UV behaviour, confirming standard

expectations.

Relying on the supersymmetric properties of the result we have generalised our bosonic

amplitudes to manifestly supersymmetric super-amplitudes and compared the results with

those obtained in the hybrid formalism and found it hard to reconcile the contributions of

N = 1, 2 sectors that can be ascribed to subtleties in performing the functional integral of

the chiral boson ρ. We hope one could find a way to overcome this problem and reproduce

the results we found in the RNS formalism within the (minimal) hybrid formalism. Alter-

natively, one could address the same issues within the pure spinor approach [18, 19, 56–59]

if one could find a reliable way to partially break supersymmetry.

Based on our present analysis, there are various directions that one can explore: higher

number of insertion points, higher loops, more realistic brane configurations or closed string

amplitudes. Let’s comment on these extensions.

Concerning higher points, 5-points look feasible since only MHV or anti-MHV ampli-

tudes should be non vanishing, 6-points looks harder since also NMHV amplitudes corre-

sponding to (+++−−−) helicity configurations should be non-vanishing. Factorizations

in three- and higher-particle channels could be analysed and the soft behaviour in string

theory could be studied more systematically, extending the tree level analyses [60–65].

Some two-loop results are accessible and at three loops there is some work [39, 40]

but starting at four loops one should expect conceptual problems in addition to practical

ones [66, 67].

Barring some subtleties, it should be almost straightforward to generalise our mani-

festly supersymmetric results to closed superstring amplitudes and explicitly check if any

form of KLT relations may be hidden in the connection.

Last but not least, phenomenologically more appealing configurations than ‘regular’

branes should be easy to address [30, 68–72].
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A Spinor helicity formalism

In D = 4 one can introduce helicity spinors uiα and ūiα̇ such that kiαα̇ = uiαū
i
α̇ and ai+αα̇ =

viαū
i
α̇/

√
2viβuiβ as well as ai−αα̇ = uiαv̄

i
α̇/

√
2ūiβ v̄iβ, with viα and v̄iα̇ arbitrary Weyl spinors

associated to gauge variations in that viα → viα + λuiα yields

ai+αα̇ → ai+αα̇ + λ
uiαū

i
α̇

viβuiβ
= ai+αα̇ +

λ

viβuiβ
kiαα̇ (A.1)

and similarly for ai−αα̇. The bilinears can be written as uαi ujα = 〈ij〉 = −〈ji〉, ūiα̇ūα̇j =

[ij] = −[ji] and 2ki·kj = −〈ij〉[ij], momentum conservation
∑

i |i〉[i| = 0 =
∑

i |i]〈i|. For

more details see e. g. [36].

A fundamental ingredient in our analysis are the traces of the tensors f ’s repre-

senting the linearised field-strengths. We introduce a compact notation: (f1 . . . fn) =

fµ1
µ2 . . . fµn

µ1 . This quantities are gauge and Lorentz invariant by definition. In our com-

putation we meet traces with two, three and four f ’s, we need to calculate their values for

fixed helicity configurations. It is also useful to decompose the tensors f in positive and

negative helicity part fµν = f+
i Σ̄i

µν + f−
i′ Σ

i′
µν with i, i′ = 1, 2, 3. The matrices Σ and Σ̄

provide the bases of the representations 3L and 3R of SL(2,C) thus they are self-dual and

antiself-dual matrices and satisfy

ǫ ρσ
µν Σ̄i

ρσ = +iΣ̄i
µν ǫ ρσ

µν Σi′

ρσ = −iΣi′

µν Σ̄iΣi′ = Σi′Σ̄i Σi′Σj′ = δi
′j′11 + iǫi

′j′

k′Σ
k′

(A.2)

TrΣi′ = TrΣ̄i = 0 TrΣi′Σ̄i = 0 TrΣi′Σj′ = 4δi
′j′ TrΣ̄iΣ̄j = 4δij (A.3)

The product of two vectors in (1, 0) and (0, 1) can be related to traces in the Lorentz

indices: 4f+·g+ = 4f+
i (g+)i = (f+g+) and 4f−·g− = (f−g−). Lorentz invariance helps to

recognize when a trace vanishes: self-dual and antiself-dual matrices cannot contract with

one another. In particular traces with an odd number of f ’s with positive (or negative)

helicity vanish.

We start to compute traces from products of two f ’s. We have two independent cases:

(−+) and (++). (f−
1 f+

2 ) = 0 is zero for Lorentz invariance. In the second case we can use

the gauge choice q1 = q2 = q to cancel some terms and obtain

(f+
1 f+

2 ) = 2a+1 ·k2 a+2 ·k1 =
[12]〈2q〉
〈1q〉

[21]〈1q〉
〈2q〉 = −[12]2 (A.4)

For traces with three f ’s, we have two independent cases: (−++) and (+++). (f−
1 f+

2 f+
3 ) =

0 is zero for Lorentz invariance. For (+++) we use the gauge q1 = q2 = q3 = q

(f+
1 f+

2 f+
3 ) = a+1 ·k3 a+2 ·k1 a+3 ·k2 − a+1 ·k2 a+2 ·k3 a+3 ·k1 = − 1√

2
[12][23][31] (A.5)

For traces with four f ’s, we have three independent cases: (++++), (−+++) and

(−−++). (f−
1 f+

2 f+
3 f+

4 ) = 0 is zero for Lorentz invariance. For (++++) we use the

gauge q1 = q2 = q3 = q4 = q

(f+
1 f+

2 f+
3 f+

4 ) = a+1 ·k4 a+2 ·k1 a+3 ·k2 a+4 ·k3 + a+1 ·k2 a+2 ·k3 a+3 ·k4 a+4 ·k1 =
1

2
[12][23][34][41]

(A.6)
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To compute (−−++) we choose the gauge q1 = q2 = k3 and q3 = q4 = k2

(f−
1 f−

2 f+
3 f+

4 ) = a−1 ·a+4 a−2 ·k1 a+3 ·k4 k2·k3 =
1

4
〈12〉2[34]2 = −1

4

〈12〉3
〈23〉〈34〉〈41〉st (A.7)

B Elliptic functions

Let q = e2πiτ , with τ complex, the Jacobi θ functions are defined as

θ[αβ](z|τ) =
∑

k∈Z

q(k−α)2/2e2πi(z−β)(k−α) (B.1)

with α and β real numbers, representing the spin structures. θ functions solve the heat

equation 4πi∂τθ = ∂2
zθ. There are identifications between different values of α and β

θ[α+k
β ](z|τ) = θ[αβ](z|τ) θ[ α−β](z|τ) = θ[−α

β ](−z|τ) θ[ α
β+k](z|τ) = θ[αβ](z − k|τ) (B.2)

This functions enjoy pseudo-periodicity properties

θ[αβ](z + k|τ) = e−2πikαθ[αβ](z|τ) θ[αβ](z + kτ |τ) = e−2πik(z−β+τ/2)θ[αβ](z|τ) (B.3)

Under the modular transformations T and S, one finds

θ[αβ](z|τ + k) = e−iπkα(α−1)θ[
α

β+k(α−1/2)](z|τ) (B.4)

θ[αβ]

(
z

τ

∣∣∣∣−
1

τ

)
= (−iτ)1/2eiπ(2αβ+z2/τ)θ[ β

−α](z|τ) (B.5)

Often we omit the dependence on τ . For our purposes, we are interested in four particular

θ functions

θ[1/21/2](z|τ) = θ1(z|τ) = 2q1/8 sin(πz)
∞∏

n=1

(1− qn)(1− e2πizqn)(1− e−2πizqn)

θ[1/2
0
](z|τ) = θ2(z|τ) = 2q1/8 cos(πz)

∞∏

n=1

(1− qn)(1 + e2πizqn)(1 + e−2πizqn)

θ[00](z|τ) = θ3(z|τ) =
∞∏

n=1

(1− qn)(1 + e2πizqn−1/2)(1 + e−2πizqn−1/2)

θ[ 0
1/2](z|τ) = θ4(z|τ) =

∞∏

n=1

(1− qn)(1− e2πizqn−1/2)(1− e−2πizqn−1/2)

(B.6)

Under z ↔ −z θ1 is odd and θ2, θ3 and θ4 are even.

There are other two other ubiquitous elliptic functions: the Dedekind function η(τ) =

q1/24
∏∞

n=1(1 − qn) and the Weierstrass function P(z, τ) = ∂2
z log θ1(z|τ) − 2η1(τ), where

η1(τ) = −2πi∂τ log η(τ). Dedekind function is related also to θ′1 by θ′1(0) = 2πη3. Under

modular transformations, Weierstrass function is a modular form with weight two and

Dedekind function transforms as

P
(

z

cτ + d
,
aτ + b

cτ + d

)
= (cτ + d)2P(z, τ) η(τ + 1) = eiπ/12η(τ) η

(
−1

τ

)
= (−iτ)1/2η(τ)

(B.7)
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The contractions of free bosons and fermions at one-loop are:

〈〈Xµ1 Xµ2〉〉 = α′ηµ1µ2GΣ(z12) 〈〈ψµ1 ψµ2〉〉α = α′ηµ1µ2Sα(z12) (B.8)

〈〈∂Xµ1 eik2X2〉〉 = iα′kµ1∂1GΣ(z12) 〈〈∂Xµ1 ∂Xµ2〉〉 = α′ηµ1µ2∂1∂2GΣ(z12) (B.9)

Where GΣ is the bosonic propagator (Bargmann kernel) on the surface and Sα is the fermion

propagator (Szego kernel). The bosonic propagator on the torus is

GT (z1, z2; τ) = −1

2

[
log

∣∣∣∣
θ1(z1 − z2|τ)

θ′1(0|τ)

∣∣∣∣
2

− 2π
[Im (z1 − z2)]

2

Im τ

]
(B.10)

It’s easy to see that GT (z1, z2; τ) is even under z1 ↔ z2, bi-periodic and quasi-

invariant under modular transformation: the unique non-trivial transformation is

GT (z1/τ, z2/τ ;−1/τ) = GT (z1, z2; τ) +
1
2 log |τ |2. We can say that the propagator is an

“inhomogeneous” modular form of degree zero. The annulus obtains from the torus by

means of the involution z̃ = 1 − z̄ and the modular parameter τA = iT/2 [26, 37–40], so

the propagator between two points z1 and z2 is the sum of the propagators on the torus

between z1 and all the images of z2, i.e. z2 itself and 1− z̄2.

GA(z1, z2; τA) =
1

2

[
GT (z1, z2; τA) + GT (z1, 1− z̄2; τA)

+ GT (1− z̄1, z2; τA) + GT (1− z̄1, 1− z̄2; τA)
]

(B.11)

On the annulus boundaries (z = τν or z = τν+1/2), the annulus propagator takes the form

GA(z1, z2; τA) = −2

[
log

θ1(z1 − z2|τ)
θ′1(0|τ)

− π
[Im (z1 − z2)]

2

Im τ

]
(B.12)

The Möbius strip can be obtained in may ways, one consists in using the same involution

used to construct the annulus but considering a torus with modular parameter τM =

τA + 1/2 [26, 37–40]. The propagator is similar to the annulus propagator

GM(z1, z2; τM) = GA(z1, z2; τM) (B.13)

The explicit formula of the Szego kernel or fermionic propagator is

Sα(z1, z2; τ) =





−∂1GA(z1, z2), if α = 1,

θα(z1 − z2)

θ1(z1 − z2)

θ′1(0)

θα(0)
, if α 6= 1.

(B.14)

where GA is not computed on the boundaries. Sα is an odd function under z1 ↔ z2.

We often use Sij instead S1(zij) = −∂iGA(zij). The fermionic propagator is a bi-periodic

modular form with weight one. When the insertions are on a boundary of the annulus, the

explicit form of Sij is

Sij = − ∂

∂zi

(
GA(zi, zj)

∣∣
z̄=−z

)
= 2

[
θ′1(zij)

θ1(zij)
− 2πi

Im zij
Im τA

]
(B.15)
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For non-planar amplitude it is necessary to compute a propagator between two points

on different boundaries. The propagator can be obtained with the parametrization z =

τν + 1/2

GT
A(z1,z2) = GA(τν1,τν2+1/2) = −2

[
log

θ2(τν12|τ)
θ′1(0|τ)

−π
Im 2z12
Im τ

]
ST
ij

= 2

[
θ′2(τνij)

θ2(τνij)
−2πi

Im zij
Im τA

]
(B.16)

In the computation we bear in mind some properties of θ functions and propagators.

In the even spin structures, products of fermionic propagators can be simplified using the

two identities

S2
α(z, τ) = P(z, τ)− eα−1(τ) , Sα(z12)Sα(z23) = −Sα(z13)ω123 − S′

α(z13) (B.17)

where eα−1(τ) = 4πi∂τ ln[θα−1(0|τ)/η(τ)] and ω123 = S12+S23+S31. Deriving w.r.t. z the

function P−S2
α we find 2Sα(z)S

′
α(z) = ∂zP(z), thus the derivative of S2

α is independent of α.

There is a formula that links the Weierstrass function and the square of the propagator

derivative, it’s linked to a function that we call Y(z)

Y(z) = −2
[
P(z)− S2(z)

]
(B.18)

where S(z) is in its general form, not computed on a boundary. This function is a modular

form with weight two and has no poles. One can prove a generalized Fay identity [41, 42]

Ω123 = S12S23 + S23S31 + S31S12 = −Y12 − Y23 − Y31 (B.19)

In order to study the limiting behaviour of Y it is convenient to first consider the expansion

of θ1 in powers of z

θ1(z) = zθ′1(0)

[
1− η1z

2 +
1

5

(
η2 + 3η21

)
z4
]
+O(z7) (B.20)

We use this expansions to compute Y(z)

Y(z = iTν/2) = −1

2

[
−∂2

z log θ1(z)− 2η1 −
(
∂zθ1(z)− 2πi

Im z

Im τ

)2
]

= −8

(
η1 +

2π

T

)
− 8

(
T 2

10
(η2 + 3η21) + πTη1 + π2

)
ν2 +O(ν4)

(B.21)

See [41] for more details on relations between elliptic functions and string one-loop

amplitudes.

B.1 Vanishing contractions due to Riemann identities

Amplitudes assume the form
∑

α cαAαZN
α , with Aα some function of z and τ . Contractions

with one bilinear are zero because of normal ordering, 〈:ψµ1
1 ψµ1

2 :〉α = 0. In the even sector

contractions of bosonic operators only give zero. To see that we use the Riemann identity:
∑

α 6=1

cαθα(z1)θα(z2)θα(z3)θα(z4) = θ1(z
′
1)θ1(z

′
2)θ1(z

′
3)θ1(z

′
4)− θ1(z

′′
1 )θ1(z

′′
2 )θ1(z

′′
3 )θ1(z

′′
4 )

(B.22)

– 41 –



J
H
E
P
0
1
(
2
0
1
6
)
0
4
3

Where the variables z′i and z′′i are linear combinations of the zi




z′1
z′2
z′3
z′4


 =

1

2




1 1 1 1

1 1 −1 −1

1 −1 1 −1

1 −1 −1 1







z1
z2
z3
z4







z′′1
z′′2
z′′3
z′′4


 =

1

2




−1 1 1 1

1 −1 1 1

1 1 −1 1

1 1 1 −1







z1
z2
z3
z4


 (B.23)

The θ1(z) functions vanish when z = 0 mod 1, thus this quantity is zero if at least one

of the z′i and one of the z′′i are zero. Considering a generic purely bosonic correlator

〈O1 . . .On〉α = 〈〈O1 . . .On〉〉 ZN
α , the sum over the even spin structures produces a vanish-

ing result in the most general case with N = 1 supersymmetry, in that

∑

α 6=1

cαZN
α ∝

∑

α 6=1

cαθα(0)θα(u
1
ab)θα(u

2
ab)θα(u

3
ab) = 0 (B.24)

To understand why this expression is zero it is enough to consider the first line of the two

matrices: 2z′1 = 2z′′1 = u1ab + u2ab + u3ab = 0 mod 1.
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Phys. Lett. B 457 (1999) 94 [hep-th/9902099] [INSPIRE].

[14] N. Berkovits, S. Gukov and B.C. Vallilo, Superstrings in 2D backgrounds with RR flux and

new extremal black holes, Nucl. Phys. B 614 (2001) 195 [hep-th/0107140] [INSPIRE].

[15] S. Kachru and E. Silverstein, 4D conformal theories and strings on orbifolds,

Phys. Rev. Lett. 80 (1998) 4855 [hep-th/9802183] [INSPIRE].

[16] K. Zoubos, Review of AdS/CFT integrability, chapter IV.2: deformations, orbifolds and open

boundaries, Lett. Math. Phys. 99 (2012) 375 [arXiv:1012.3998] [INSPIRE].

[17] E. Kiritsis, String theory in a nutshell, Princeton University Press, Princeton U.S.A. (2007).

[18] C.R. Mafra, O. Schlotterer and S. Stieberger, Complete N -point superstring disk amplitude I.

Pure spinor computation, Nucl. Phys. B 873 (2013) 419 [arXiv:1106.2645] [INSPIRE].

[19] C.R. Mafra, O. Schlotterer and S. Stieberger, Complete N -point superstring disk amplitude

II. Amplitude and hypergeometric function structure, Nucl. Phys. B 873 (2013) 461

[arXiv:1106.2646] [INSPIRE].

[20] L.A. Barreiro and R. Medina, Revisiting the S-matrix approach to the open superstring low

energy effective lagrangian, JHEP 10 (2012) 108 [arXiv:1208.6066] [INSPIRE].

[21] L.A. Barreiro and R. Medina, RNS derivation of N-point disk amplitudes from the revisited

S-matrix approach, Nucl. Phys. B 886 (2014) 870 [arXiv:1310.5942] [INSPIRE].

[22] M.B. Green, J.H. Schwarz and E. Witten, Superstring Theory 25th anniversary edition,

Cambridge University Press, Camrbidge U.K. (2012).

[23] M.B. Green and J.H. Schwarz, The hexagon gauge anomaly in Type I superstring theory,

Nucl. Phys. B 255 (1985) 93 [INSPIRE].

[24] D.J. Gross and P.F. Mende, Modular subgroups, odd spin structures and gauge invariance in

the heterotic string, Nucl. Phys. B 291 (1987) 653 [INSPIRE].

[25] D. Friedan, S.H. Shenker and E.J. Martinec, Covariant quantization of superstrings,

Phys. Lett. B 160 (1985) 55 [INSPIRE].

[26] M. Bianchi and A. Sagnotti, The partition function of the SO(8192) bosonic string,

Phys. Lett. B 211 (1988) 407 [INSPIRE].

[27] M. Bianchi and A. Sagnotti, Twist symmetry and open string Wilson lines,

Nucl. Phys. B 361 (1991) 519 [INSPIRE].

[28] M. Bianchi and A. Sagnotti, On the systematics of open string theories,

Phys. Lett. B 247 (1990) 517 [INSPIRE].

[29] C. Angelantonj, M. Bianchi, G. Pradisi, A. Sagnotti and Ya.S. Stanev, Chiral asymmetry in

four-dimensional open string vacua, Phys. Lett. B 385 (1996) 96 [hep-th/9606169]

[INSPIRE].

[30] C. Angelantonj and A. Sagnotti, Open strings, Phys. Rept. 371 (2002) 1 [hep-th/0204089]

[INSPIRE].

[31] E. Kiritsis and N.A. Obers, Heterotic type-I duality in D < 10-dimensions, threshold

corrections and D instantons, JHEP 10 (1997) 004 [hep-th/9709058] [INSPIRE].

[32] P. Anastasopoulos, M. Bianchi, G. Sarkissian and Y.S. Stanev, On gauge couplings and

thresholds in type I gepner models and otherwise, JHEP 03 (2007) 059 [hep-th/0612234]

[INSPIRE].

– 43 –

http://dx.doi.org/10.1088/1126-6708/1999/03/018
http://arxiv.org/abs/hep-th/9902098
http://inspirehep.net/search?p=find+EPRINT+hep-th/9902098
http://dx.doi.org/10.1016/S0370-2693(99)00548-1
http://arxiv.org/abs/hep-th/9902099
http://inspirehep.net/search?p=find+EPRINT+hep-th/9902099
http://dx.doi.org/10.1016/S0550-3213(01)00413-8
http://arxiv.org/abs/hep-th/0107140
http://inspirehep.net/search?p=find+EPRINT+hep-th/0107140
http://dx.doi.org/10.1103/PhysRevLett.80.4855
http://arxiv.org/abs/hep-th/9802183
http://inspirehep.net/search?p=find+EPRINT+hep-th/9802183
http://dx.doi.org/10.1007/s11005-011-0515-8
http://arxiv.org/abs/1012.3998
http://inspirehep.net/search?p=find+EPRINT+arXiv:1012.3998
http://dx.doi.org/10.1016/j.nuclphysb.2013.04.023
http://arxiv.org/abs/1106.2645
http://inspirehep.net/search?p=find+EPRINT+arXiv:1106.2645
http://dx.doi.org/10.1016/j.nuclphysb.2013.04.022
http://arxiv.org/abs/1106.2646
http://inspirehep.net/search?p=find+EPRINT+arXiv:1106.2646
http://dx.doi.org/10.1007/JHEP10(2012)108
http://arxiv.org/abs/1208.6066
http://inspirehep.net/search?p=find+EPRINT+arXiv:1208.6066
http://dx.doi.org/10.1016/j.nuclphysb.2014.07.015
http://arxiv.org/abs/1310.5942
http://inspirehep.net/search?p=find+EPRINT+arXiv:1310.5942
http://dx.doi.org/10.1016/0550-3213(85)90130-0
http://inspirehep.net/search?p=find+J+"Nucl.Phys.,B255,93"
http://dx.doi.org/10.1016/0550-3213(87)90489-5
http://inspirehep.net/search?p=find+J+"Nucl.Phys.,B291,653"
http://dx.doi.org/10.1016/0370-2693(85)91466-2
http://inspirehep.net/search?p=find+J+"Phys.Lett.,B160,55"
http://dx.doi.org/10.1016/0370-2693(88)91884-9
http://inspirehep.net/search?p=find+J+"Phys.Lett.,B211,407"
http://dx.doi.org/10.1016/0550-3213(91)90271-X
http://inspirehep.net/search?p=find+J+"Nucl.Phys.,B361,519"
http://dx.doi.org/10.1016/0370-2693(90)91894-H
http://inspirehep.net/search?p=find+J+"Phys.Lett.,B247,517"
http://dx.doi.org/10.1016/0370-2693(96)00869-6
http://arxiv.org/abs/hep-th/9606169
http://inspirehep.net/search?p=find+EPRINT+hep-th/9606169
http://dx.doi.org/10.1016/S0370-1573(02)00273-9
http://arxiv.org/abs/hep-th/0204089
http://inspirehep.net/search?p=find+EPRINT+hep-th/0204089
http://dx.doi.org/10.1088/1126-6708/1997/10/004
http://arxiv.org/abs/hep-th/9709058
http://inspirehep.net/search?p=find+EPRINT+hep-th/9709058
http://dx.doi.org/10.1088/1126-6708/2007/03/059
http://arxiv.org/abs/hep-th/0612234
http://inspirehep.net/search?p=find+EPRINT+hep-th/0612234


J
H
E
P
0
1
(
2
0
1
6
)
0
4
3

[33] J.A. Minahan, One loop amplitudes on orbifolds and the renormalization of coupling

constants, Nucl. Phys. B 298 (1988) 36 [INSPIRE].

[34] M. Berg, M. Haack and J.U. Kang, One-loop Kähler metric of D-branes at angles,

JHEP 11 (2012) 091 [arXiv:1112.5156] [INSPIRE].

[35] M. Berg, M. Haack, J.U. Kang and S. Sjörs, Towards the one-loop Kähler metric of
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[69] D. Lüst, S. Stieberger and T.R. Taylor, The LHC string hunter’s companion,

Nucl. Phys. B 808 (2009) 1 [arXiv:0807.3333] [INSPIRE].

[70] L.A. Anchordoqui et al., LHC phenomenology for string hunters,

Nucl. Phys. B 821 (2009) 181 [arXiv:0904.3547] [INSPIRE].
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