56 research outputs found

    Cell Line and DNA Biobank From Patients Affected by Genetic Diseases

    Get PDF
    The Bioresource, presently storing 10,279 biospecimens, was initially established in 1976 as a private laboratory-collection to maintain rare mutant cell lines from genetic-metabolic diseases. Shortly afterwards, however, data from the sample collection was organised in a database and the sample collection was released to the scientific community. The Biobank has received Telethon grants since 1993, as individual facility, and from 2008 as part of the Telethon Network of Genetic Biobanks (www.biobanknetwork.org).In 2010, the Biobank has obtained official recognition from Regione Liguria. The Biobank has always provided essential services by establishing, analysing, maintaining, and distributing biospecimens from patients affected by rare genetic diseases. Up to now, the contribution of the Biobank to the scientific community has been expressed in acknowledgement notes in 145 scientific manuscripts

    Identification and Characterization of 15 Novel GALC Gene Mutations Causing Krabbe Disease

    Get PDF
    The characterization of the underlying GALC gene lesions was performed in 30 unrelated patients affected by Krabbe disease, an autosomal recessive leukodystrophy caused by the deficiency of lysosomal enzyme galactocerebrosidase. The GALC mutational spectrum comprised 33 distinct mutant (including 15 previously unreported) alleles. With the exception of 4 novel missense mutations that replaced evolutionarily highly conserved residues (p.P318R, p.G323R, p.I384T, p.Y490N), most of the newly described lesions altered mRNA processing. These included 7 frameshift mutations (c.61delG, c.408delA, c.521delA, c.1171_1175delCATTCinsA, c.1405_1407delCTCinsT, c.302_308dupAAATAGG, c.1819_1826dupGTTACAGG), 3 nonsense mutations (p.R69X, p.K88X, p.R127X) one of which (p.K88X) mediated the skipping of exon 2, and a splicing mutation (c.1489+1G>A) which induced the partial skipping of exon 13. In addition, 6 previously unreported GALC polymorphisms were identified. The functional significance of the novel GALC missense mutations and polymorphisms was investigated using the MutPred analysis tool. This study, reporting one of the largest genotype-phenotype analyses of the GALC gene so far performed in a European Krabbe disease cohort, revealed that the Italian GALC mutational profile differs significantly from other populations of European origin. This is due in part to a GALC missense substitution (p.G553R) that occurs at high frequency on a common founder haplotype background in patients originating from the Naples region. © 2010 Wiley-Liss, Inc

    Molecular Genetic Analysis of the PLP1 Gene in 38 Families with PLP1-related disorders: Identification and Functional Characterization of 11 Novel PLP1 Mutations

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The breadth of the clinical spectrum underlying Pelizaeus-Merzbacher disease and spastic paraplegia type 2 is due to the extensive allelic heterogeneity in the X-linked <it>PLP1 </it>gene encoding myelin proteolipid protein (PLP). <it>PLP1 </it>mutations range from gene duplications of variable size found in 60-70% of patients to intragenic lesions present in 15-20% of patients.</p> <p>Methods</p> <p>Forty-eight male patients from 38 unrelated families with a PLP1-related disorder were studied. All DNA samples were screened for <it>PLP1 </it>gene duplications using real-time PCR. <it>PLP1 </it>gene sequencing analysis was performed on patients negative for the duplication. The mutational status of all 14 potential carrier mothers of the familial <it>PLP1 </it>gene mutation was determined as well as 15/24 potential carrier mothers of the <it>PLP1 </it>duplication.</p> <p>Results and Conclusions</p> <p><it>PLP1 </it>gene duplications were identified in 24 of the unrelated patients whereas a variety of intragenic <it>PLP1 </it>mutations were found in the remaining 14 patients. Of the 14 different intragenic lesions, 11 were novel; these included one nonsense and 7 missense mutations, a 657-bp deletion, a microdeletion and a microduplication. The functional significance of the novel <it>PLP1 </it>missense mutations, all occurring at evolutionarily conserved residues, was analysed by the <it>MutPred </it>tool whereas their potential effect on splicing was ascertained using the <it>Skippy </it>algorithm and a neural network. Although <it>MutPred </it>predicted that all 7 novel missense mutations would be likely to be deleterious, <it>in silico </it>analysis indicated that four of them (p.Leu146Val, p.Leu159Pro, p.Thr230Ile, p.Ala247Asp) might cause exon skipping by altering exonic splicing elements. These predictions were then investigated <it>in vitro </it>for both p.Leu146Val and p.Thr230Ile by means of RNA or minigene studies and were subsequently confirmed in the case of p.Leu146Val. Peripheral neuropathy was noted in four patients harbouring intragenic mutations that altered RNA processing, but was absent from all <it>PLP1</it>-duplication patients. Unprecedentedly, family studies revealed the <it>de novo </it>occurrence of the <it>PLP1 </it>duplication at a frequency of 20%.</p

    Microcephaly, sensorineural deafness and Currarino triad with duplication–deletion of distal 7q

    Get PDF
    Currarino syndrome (CS) is a peculiar form of caudal regression syndrome [also known as autosomal dominant sacral agenesis (OMIM no. 176450)] characterised by (1) partial absence of the sacrum with intact first sacral vertebra, (2) a pre-sacral mass and (3) anorectal anomalies (Currarino triad). We studied a 3-year-old girl with Currarino triad who had additional systemic features and performed array comparative genomic hybridisation to look for chromosomal abnormalities. This girl had the typical spectrum of anomalies of the CS including (a) partial sacral agenesis (hemisacrum with remnants of only sacral S1–S2 vertebrae and a residual S3 vertebral body) associated with complete coccygeal agenesis, (b) pre-intrasacral dermoid, (c) intra-dural lipoma, (d) ectopic anus and (e) tethered cord. She had, in addition, pre- and post-natal growth impairment (<3rd percentile), severe microcephaly (<−3 SD) with normal gyration pattern and lack of cortical thickening associated with a hypoplastic inferior vermis, facial dysmorphism, sensorineural deafness and decreased serum levels of IGF-1. A de novo 10.3-Mb duplication of 7q34–q35 and an 8.8-Mb deletion on 7q36 were identified in this patient. The Homeobox HLXB9 (CS) gene is contained within the deletion accounting for the CS phenotype including microcephaly. The spectrums of associated abnormalities in the IGF-1 deficiency growth retardation with sensorineural deafness and mental retardation syndrome (OMIM no. 608747) are discussed. To the best of our knowledge, this is the first reported case of a patient with distal 7q chromosomal imbalance and features of CS triad (including microcephaly) and the first documented case of a patient with normal gyration pattern microcephaly. The spectrum of associated anomalies in this newly recognised phenotype complex consists of growth failure, typical facial anomalies with additional (previously unreported) nervous system abnormalities (e.g. sensorineural deafness) and somatomedin C deficiency

    Pomgnt1 mutations in congenital muscular dystrophy: Genotype-phenotype correlation and expanded clinical spectrum

    No full text
    Background Muscle-eye-brain disease is a congenital muscular dystrophy with eye and brain involvement due to POMGnT1 mutations. Objective To describe the clinical and molecular features of 3 Italian patients with POMGnT1 mutations. Design Case reports. Patients One patient had muscle and brain abnormalities without eye involvement. Two patients had a classic muscle-eye-brain disease phenotype with different levels of clinical severity. Results Brain magnetic resonance imaging showed cortical malformation and posterior fossa involvement. Immunofluorescence for glycosylated -dystroglycan performed on muscle biopsy specimens demonstrated an absent signal in 1 patient and reduced staining in 2 patients. Molecular analysis identified 5 mutations, 2 of which are novel. Conclusion This article adds to what is known about the genotype-phenotype correlation and expands our awareness of the clinical spectrum associated with POMGnT1 mutations

    AIMP1/p43 Mutation and PMLD

    Get PDF
    none4nomixedBiancheri R.; Rossi A.; Zara F.; Filocamo M.Biancheri, R.; Rossi, A.; Zara, F.; Filocamo, M

    Early-onset neurodegeneration with brain iron accumulationdue to PANK2 mutation

    No full text
    Background: Pantothenate kinase-associated neurodegeneration (PKAN) is a neurodegenerative disorder caused by pantothenate kinase (PANK2) gene mutations. Brain magnetic resonance imaging (MRI) typically shows the "eye-of-the-tiger" sign, i.e. bilateral pallidal T2 hypointensity with a small central region of T2-hyperintensity. Aims: To describe clinical and M RI findings of a boy with early-onset neurodegeneration with brain iron accumulation due to PANK2 mutation. Methods: Clinical, neuroradiological and molecular investigations have been performed. Results: At first observation (2 years and 10 months) the boy presented only with developmental delay and toe-walking and isolated T2 hyperintensity within globi pallidi on brain MRI. One year later, small rounded areas of markedly low signal within the globi pallidi on T2(*)- weighted images appeared in association with mild dystonia. PANK2 gene homozygous mutation confirmed the diagnosis of PKAN. Conclusions: In young children, PKAN should be suspected also before clinical and neuroradiological picture is fully indicative, to avoid delayed diagnosis of a genetic disease for which therapeutical options could be potentially useful if administered in paucisymptomatic subjects
    corecore