32 research outputs found

    Influence of instrument parameters on the electrochemical activity of 3D printed carbon thermoplastic electrodes

    Get PDF
    3D printing provides a reliable approach for the manufacture of carbon thermoplastic composite electrochemical sensors. Many studies have explored the impact of printing parameters on the electrochemical activity of carbon thermoplastic electrodes but limited is known about the influence of instrument parameters, which have been shown to alter the structure and mechanical strength of 3D printed thermoplastics. We explored the impact of extruder temperature, nozzle diameter and heated bed temperature on the electrochemical activity of carbon black/poly-lactic acid (CB/PLA) electrodes. Cyclic voltammetry and electrochemical impedance spectroscopy measurements were conducted using standard redox probes. The electrode surface and cross-section of the electrode was visualised using scanning electron microscopy. We found that using extruder temperatures of 230 °C and 240 °C improved the electrochemical activity of CB/PLA electrodes, due to an increase in surface roughness and a reduction in the number of voids in-between print layers. Nozzle diameter, heated bed temperature of different 3D printers did not impact the electrochemical activity of CB/PLA electrodes. However high-end printers provide improved batch reproducibility of electrodes. These findings highlight the key instrument parameters that need to be considered when manufacturing carbon thermoplastic composite electrochemical sensors when using 3D printing

    Evaluation of the causal effects between dopamine infusion changeover and fluctuations in mean arterial pressure in neonates

    Get PDF
    Objective To evaluate whether changing dopamine infusions every 12 hours and preparing these infusions 30 min before administration reduces blood pressure fluctuations in preterm and term neonates. Design This was a retrospective study using data from live patients on the neonatal unit and prospective study exploring stability of infusions in a laboratory-based neonatal ward simulation. Setting Single-centre study in a tertiary neonatal surgical unit in a university teaching hospital. Patients Neonates who received more than one subsequent dopamine infusion and had invasive arterial blood pressure monitoring, during their admission in the neonatal unit, were included. Interventions As part of the Quality Improvement project, the standard operating procedure (SOP) was changed, and dopamine infusions were prepared by nursing staff and left to rest for 30 min before administering to the neonate. Additionally, infusions were replaced every 12 hours. Main outcome measures The percentage change in mean arterial pressure (MAP) and the percentage loss in the drug concentration during infusion during changeover. Results Our findings indicate that up to 15% of the initial dopamine concentration is lost after 24 hours. This results in a sharp variation in the dopamine concentration during infusion changeover that correlates with observed rapid fluctuations in MAP. In changing the SOP, no significant difference in the concentration of dopamine and MAP were observed over 12 hours. Conclusions Delaying administration of dopamine infusions by 30 min after preparation combined with changing infusions 12 hourly has reduced MAP fluctuations. Therefore, the risks associated with MAP fluctuations, including intraventricular haemorrhages, are reduced

    Amperometry approach curve profiling to understand the regulatory mechanisms governing the concentration of intestinal extracellular serotonin

    Get PDF
    Enterochromaffin (EC) cells located within the intestinal mucosal epithelium release serotonin (5-HT) to regulate motility tones, barrier function and the immune system. Electroanalytical methodologies have been able to monitor steady state basal extracellular 5-HT levels but are unable to provide insight into how these levels are influenced by key regulatory processes such as release and uptake. We established a new measurement approach, amperometry approach curve profiling, which monitors the extracellular 5-HT level at different electrode–tissue (E–T) distances. Analysis of the current profile can provide information on contributions of regulatory components on the observed extracellular 5-HT level. Measurements were conducted from ex vivo murine ileum and colon using a boron-doped diamond (BDD) microelectrode. Amperometry approach curve profiling coupled with classical pharmacology demonstrated that extracellular 5-HT levels were significantly lower in the colon when compared to the ileum. This difference was due to a greater degree of activity of the 5-HT transporter (SERT) and a reduced amount of 5-HT released from colonic EC cells. The presence of an inhibitory 5-HT4 autoreceptor was observed in the colon, where a 40% increase in extracellular 5-HT was the half maximal inhibitory concentration for activation of the autoreceptor. This novel electroanalytical approach allows estimates of release and re-uptake and their contribution to 5-HT extracellular concentration from intestinal tissue be obtained from a single series of measurements

    The effects of printing orientation on the electrochemical behaviour of 3D printed acrylonitrile butadiene styrene (ABS)/carbon black electrodes

    Get PDF
    AbstractAdditive manufacturing also known as 3D printing is being utilised in electrochemistry to reproducibly develop complex geometries with conductive properties. In this study, we explored if the electrochemical behavior of 3D printed acrylonitrile butadiene styrene (ABS)/carbon black electrodes was influenced by printing direction. The electrodes were printed in both horizontal and vertical directions. The horizsontal direction resulted in a smooth surface (HPSS electrode) and a comparatively rougher surface (HPRS electrode) surface. Electrodes were characterized using cyclic voltammetry, electrochemical impedance spectroscopy and chronoamperometry. For various redox couples, the vertical printed (VP) electrode showed enhanced current response when compared the two electrode surfaces generated by horizontal print direction. No differences in the capacitive response was observed, indicating that the conductive surface area of all types of electrodes were identical. The VP electrode had reduced charge transfer resistance and uncompensated solution resistance when compared to the HPSS and HPRS electrodes. Overall, electrodes printed in a vertical direction provide enhanced electrochemical performance and our study indicates that print orientation is a key factor that can be used to enhance sensor performance.</jats:p

    Monitoring the electroactive cargo of extracellular vesicles can differentiate various cancer cell lines

    Get PDF
    Extracellular vesicles (EVs) are pivotal in cell-to-cell communication due to the array of cargo contained within these vesicles. EVs are considered important biomarkers for identification of disease, however most measurement approaches have focused on monitoring specific surface macromolecular targets. Our study focuses on exploring the electroactive component present within cargo from EVs obtained from various cancer and non-cancer cell lines using a disk carbon fiber microelectrode. Variations in the presence of oxidizable components were observed when the total cargo from EVs were measured, with the highest current detected in EVs from MCF7 cells. There were differences observed in the types of oxidizable species present within EVs from MCF7 and A549 cells. Single entity measurements showed clear spikes due to the detection of oxidizable cargo within EVs from MCF7 and A549 cells. These studies highlight the promise of monitoring EVs through the presence of varying electroactive components within the cargo and can drive a wave of new strategies towards specific detection of EVs for diagnosis and prognosis of various diseases

    Recycling chocolate aluminium wrapping foil as to create electrochemical metal strip electrodes

    Get PDF
    The development of low-cost electrode devices from conductive materials has recently attracted considerable attention as a sustainable means to replace the existing commercially available electrodes. In this study, two different electrode surfaces (surfaces 1 and 2, denoted as S1 and S2) were fabricated from chocolate wrapping aluminum foils. Energy dispersive X-Ray (EDX) and field emission scanning electron microscopy (FESEM) were used to investigate the elemental composition and surface morphology of the prepared electrodes. Meanwhile, cyclic voltammetry (CV), chronoamperometry, electrochemical impedance spectroscopy (EIS), and differential pulse voltammetry (DPV) were used to assess the electrical conductivities and the electrochemical activities of the prepared electrodes. It was found that the fabricated electrode strips, particularly the S1 electrode, showed good electrochemical responses and conductivity properties in phosphate buffer (PB) solutions. Interestingly, both of the electrodes can respond to the ruthenium hexamine (Ruhex) redox species. The fundamental results presented from this study indicate that this electrode material can be an inexpensive alternative for the electrode substrate. Overall, our findings indicate that electrodes made from chocolate wrapping materials have promise as electrochemical sensors and can be utilized in various applications

    Diamond Sensors for Neurochemistry

    No full text

    Changes in neurotransmitter release during ageing in a model invertebrate system

    No full text
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore