26 research outputs found

    Diameter-Selective Dispersion of Carbon Nanotubes via Polymers: A Competition between Adsorption and Bundling

    Full text link
    The mechanism of the selective dispersion of single-walled carbon nanotubes (CNTs) by polyfluorene polymers is studied in this paper. Using extensive molecular dynamics simulations, it is demonstrated that diameter selectivity is the result of a competition between bundling of CNTs and adsorption of polymers on CNT surfaces. The preference for certain diameters corresponds to local minima of the binding energy difference between these two processes. Such minima in the diameter dependence occur due to abrupt changes in the CNT's coverage with polymers and their calculated positions are in quantitative agreement with preferred diameters, reported experimentally. The presented approach defines a theoretical framework for the further understanding and improvement of dispersion/extraction processes.Comment: 22 pages, 5 figures, ACS Nano (2015

    Multireference configuration interaction treatment of excited-state electron correlation in periodic systems: the band structure of trans-polyacetylene

    Full text link
    A systematic method to account for electron correlation in periodic systems which can predict quantitatively correct band structures of non-conducting solids from first principles is presented. Using localized Hartree-Fock orbitals (both occupied and virtual ones), an effective Hamiltonian is built up whose matrix elements can easily be transferred from finite to infinite systems. To describe the correlation effects wave-function-based multireference configuration interaction (MRCI) calculations with singly and doubly excited configurations are performed. This way it is possible to generate, both, valence and conduction bands with all correlation effects taken into account. Trans-polyacetylene is chosen as a test system.Comment: 9 pages, 2 figures, submitted to Chem. Phys. Let

    Boron Doping of SWCNTs as a Way to Enhance the Thermoelectric Properties of Melt-Mixed Polypropylene/SWCNT Composites

    No full text
    Composites based on the matrix polymer polypropylene (PP) filled with single-walled carbon nanotubes (SWCNTs) and boron-doped SWCNTs (B-SWCNTs) were prepared by melt-mixing to analyze the influence of boron doping of SWCNTs on the thermoelectric properties of these nanocomposites. It was found that besides a significantly higher Seebeck coefficient of B-SWCNT films and powder packages, the values for B-SWCNT incorporated in PP were higher than those for SWCNTs. Due to the higher electrical conductivity and the higher Seebeck coefficients of B-SWCNTs, the power factor (PF) and the figure of merit (ZT) were also higher for the PP/B-SWCNT composites. The highest value achieved in this study was a Seebeck coefficient of 59.7 µV/K for PP with 0.5 wt% B-SWCNT compared to 47.9 µV/K for SWCNTs at the same filling level. The highest PF was 0.78 µW/(m·K2) for PP with 7.5 wt% B-SWCNT. SWCNT macro- and microdispersions were found to be similar in both composite types, as was the very low electrical percolation threshold between 0.075 and 0.1 wt% SWCNT. At loadings between 0.5 and 2.0 wt%, B-SWCNT-based composites have one order of magnitude higher electrical conductivity than those based on SWCNT. The crystallization behavior of PP is more strongly influenced by B-SWCNTs since their composites have higher crystallization temperatures than composites with SWCNTs at a comparable degree of crystallinity. Boron doping of SWCNTs is therefore a suitable way to improve the electrical and thermoelectric properties of composites

    Diameter-Selective Dispersion of Carbon Nanotubes <i>via</i> Polymers: A Competition between Adsorption and Bundling

    No full text
    The mechanism of the selective dispersion of single-walled carbon nanotubes (CNTs) by polyfluorene polymers is studied in this paper. Using extensive molecular dynamics simulations, it is demonstrated that diameter selectivity is the result of a competition between bundling of CNTs and adsorption of polymers on CNT surfaces. The preference for certain diameters corresponds to local minima of the binding energy difference between these two processes. Such minima in the diameter dependence occur due to abrupt changes in the CNT’s coverage with polymers, and their calculated positions are in quantitative agreement with preferred diameters reported experimentally. The presented approach defines a theoretical framework for the further understanding and improvement of dispersion/extraction processes
    corecore