8 research outputs found
Large-Scale Recombinant Production of the SARS-CoV-2 Proteome for High-Throughput and Structural Biology Applications
The highly infectious disease COVID-19 caused by the Betacoronavirus SARS-CoV-2 poses a severe threat to humanity and demands the redirection of scientific efforts and criteria to organized research projects. The international COVID19-NMR consortium seeks to provide such new approaches by gathering scientific expertise worldwide. In particular, making available viral proteins and RNAs will pave the way to understanding the SARS-CoV-2 molecular components in detail. The research in COVID19-NMR and the resources provided through the consortium are fully disclosed to accelerate access and exploitation. NMR investigations of the viral molecular components are designated to provide the essential basis for further work, including macromolecular interaction studies and high-throughput drug screening. Here, we present the extensive catalog of a holistic SARS-CoV-2 protein preparation approach based on the consortium’s collective efforts. We provide protocols for the large-scale production of more than 80% of all SARS-CoV-2 proteins or essential parts of them. Several of the proteins were produced in more than one laboratory, demonstrating the high interoperability between NMR groups worldwide. For the majority of proteins, we can produce isotope-labeled samples of HSQC-grade. Together with several NMR chemical shift assignments made publicly available on covid19-nmr.com, we here provide highly valuable resources for the production of SARS-CoV-2 proteins in isotope-labeled form
Synthesis and characterization of hydroxyapatite modified with (9r)-9-hydroxystearic acid
(9R)-9-hydroxystearic acid (9R-HSA) has been proven to have antitumoral activity because it is shown to inhibit histone deacetylase 1, an enzyme which activates DNA replication, and the (R)-enantiomer has been shown to be more active than the (S)-enantiomer both in vitro and by molecular docking. Hydroxyapatite is the main mineral component of bone and teeth and has been used for over 20 years in prostheses and their coating because it is biocompatible and bioactive. The goal of incorporating 9R-HSA into hydroxyapatite is to have a material that combines the bioactivity of HA with the antitumoral properties of 9R-HSA.
In this work, 9R-HSA and its potassium salt were synthesized and the latter was also incorporated into hydroxyapatite. The content of (R)-9-hydroxystearate ion incorporated into the apatitic structure was shown to be a function of its concentration in solution and can reach values higher than 8.5%. (9R)-9-hydroxystearic acid modified hydroxyapatite was extensively characterized to determine the effect of the incorporation of the organic molecule. This incorporation does not significantly alter the unit cell but reduces the size of both the crystals as well as the coherent domains, mainly along the a-axis of hydroxyapatite. This is believed to be due to the coordination of the negatively charged carboxylate group to the calcium ions which are more exposed on the (100) face of the crystal, therefore limiting the growth mainly in this direction. Further analyses showed that the material becomes hydrophobic and more negatively charged with the addition of 9R-HSA but both of these properties reach a plateau at less than 5% wt of 9R-HSA
H, C and N Backbone chemical shift assignments of the n-terminal and central intrinsically disordered domains of SARS-CoV-2 nucleoprotein
International audienceThe nucleoprotein (N) from SARS-CoV-2 is an essential cofactor of the viral replication transcription complex and as such represents an important target for viral inhibition. It has also been shown to colocalize to the transcriptase-replicase complex, where many copies of N decorate the viral genome, thereby protecting it from the host immune system. N has also been shown to phase separate upon interaction with viral RNA. N is a 419 amino acid multidomain protein, comprising two folded, RNA-binding and dimerization domains spanning residues 45175 and 264365 respectively. The remaining 164 amino acids are predicted to be intrinsically disordered, but there is currently no atomic resolution information describing their behaviour. Here we assign the backbone resonances of the first two intrinsically disordered domains (N1, spanning residues 144 and N3, spanning residues 176263). Our assignment provides the basis for the identification of inhibitors and functional and interaction studies of this essential protein
Interaction of the Cysteine-Rich Domain of the Paramecium domesticated transposase PiggyMac with histone H3
International audienceThe piggyBac transposase (PB) is distinguished by its activity and utility in genome engineering, especially in humans where it has highly promising therapeutic potential. Little is known, however, about the structure-function relationships of the different domains of PB. Here, we demonstrate in vitro and in vivo that its C-terminal Cysteine-Rich Domain (CRD) is essential for DNA breakage, joining and transposition and that it binds to specific DNA sequences in the left and right transposon ends, and to an additional unexpectedly internal site at the left end. Using NMR, we show that the CRD adopts the specific fold of the cross-brace zinc finger protein family. We determine the interaction interfaces between the CRD and its target, the 5-TGCGT-3 /3-ACGCA-5 motifs found in the left, left internal and right transposon ends, and use NMR results to propose docking models for the complex, which are consistent with our site-directed mutagenesis data. Our results provide support for a model of the PB/DNA interactions in the context of the transpososome, which will be useful for the rational design of PB mutants with increased activity
The intrinsically disordered SARS-CoV-2 nucleoprotein in dynamic complex with its viral partner nsp3a
International audienceThe processes of genome replication and transcription of SARS-CoV-2 represent important targets for viral inhibition. Betacoronaviral nucleoprotein (N) is a highly dynamic cofactor of the replication-transcription complex (RTC), whose function depends on an essential interaction with the amino-terminal ubiquitin-like domain of nsp3 (Ubl1). Here, we describe this complex (dissociation constant - 30 to 200 nM) at atomic resolution. The interaction implicates two linear motifs in the intrinsically disordered linker domain (N3), a hydrophobic helix ((219)LALLLLDRLNQL(230)) and a disordered polar strand ((243)GQTVTKKSAAEAS(255)), that mutually engage to form a bipartite interaction, folding N3 around Ubl1. This results in substantial collapse in the dimensions of dimeric N, forming a highly compact molecular chaperone, that regulates binding to RNA, suggesting a key role of nsp3 in the association of N to the RTC. The identification of distinct linear motifs that mediate an important interaction between essential viral factors provides future targets for development of innovative strategies against COVID-19
1H, 13C and 15N backbone chemical shift assignments of SARS-CoV-2 nsp3a
International audienceThe non-structural protein nsp3 from SARS-CoV-2 plays an essential role in the viral replication transcription complex. Nsp3a constitutes the N-terminal domain of nsp3, comprising a ubiquitin-like folded domain and a disordered acidic chain. This region of nsp3a has been linked to interactions with the viral nucleoprotein and the structure of double membrane vesicles. Here, we report the backbone resonance assignment of both domains of nsp3a. The study is carried out in the context of the international covid19-nmr consortium, which aims to characterize SARS-CoV-2 proteins and RNAs, providing for example NMR chemical shift assignments of the different viral components. Our assignment will provide the basis for the identification of inhibitors and further functional and interaction studies of this essential protein
Large-Scale Recombinant Production of the SARS-CoV-2 Proteome for High-Throughput and Structural Biology Applications
The highly infectious disease COVID-19 caused by the Betacoronavirus SARS-CoV-2 poses a severe threat to humanity and demands the redirection of scientific efforts and criteria to organized research projects. The international COVID19-NMR consortium seeks to provide such new approaches by gathering scientific expertise worldwide. In particular, making available viral proteins and RNAs will pave the way to understanding the SARS-CoV-2 molecular components in detail. The research in COVID19-NMR and the resources provided through the consortium are fully disclosed to accelerate access and exploitation. NMR investigations of the viral molecular components are designated to provide the essential basis for further work, including macromolecular interaction studies and high-throughput drug screening. Here, we present the extensive catalog of a holistic SARS-CoV-2 protein preparation approach based on the consortium’s collective efforts. We provide protocols for the large-scale production of more than 80% of all SARS-CoV-2 proteins or essential parts of them. Several of the proteins were produced in more than one laboratory, demonstrating the high interoperability between NMR groups worldwide. For the majority of proteins, we can produce isotope-labeled samples of HSQC-grade. Together with several NMR chemical shift assignments made publicly available on covid19-nmr.com, we here provide highly valuable resources for the production of SARS-CoV-2 proteins in isotope-labeled form.This work was supported by Goethe University (Corona funds),
the DFG-funded CRC: “Molecular Principles of RNA-Based
Regulation,” DFG infrastructure funds (project numbers:
277478796, 277479031, 392682309, 452632086, 70653611), the
state of Hesse (BMRZ), the Fondazione CR Firenze (CERM),
and the IWB-EFRE-program 20007375. This project has
received funding from the European Union’s Horizon 2020
research and innovation program under Grant Agreement No.
871037. AS is supported by DFG Grant SCHL 2062/2-1 and by the
JQYA at Goethe through project number 2019/AS01. Work in the
lab of KV was supported by a CoRE grant from the University of
New Hampshire. The FLI is a member of the Leibniz Association
(WGL) and financially supported by the Federal Government of
Germany and the State of Thuringia. Work in the lab of RM was
supported by NIH (2R01EY021514) and NSF (DMR-2002837).
BN-B was supported by theNSF GRFP.MCwas supported byNIH
(R25 GM055246 MBRS IMSD), and MS-P was supported by the
HHMI Gilliam Fellowship. Work in the labs of KJ and KT was
supported by Latvian Council of Science Grant No. VPP-COVID
2020/1-0014. Work in the UPAT’s lab was supported by the
INSPIRED (MIS 5002550) project, which is implemented under
the Action “Reinforcement of the Research and Innovation
Infrastructure,” funded by the Operational Program
“Competitiveness, Entrepreneurship and Innovation” (NSRF
2014–2020) and cofinanced by Greece and the EU (European
Regional Development Fund) and the FP7 REGPOT CT-2011-
285950–“SEE-DRUG” project (purchase of UPAT’s 700MHz
NMR equipment). Work in the CM-G lab was supported by
the Helmholtz society. Work in the lab of ABö was supported
by the CNRS, the French National Research Agency (ANR, NMRSCoV2-
ORF8), the Fondation de la Recherche Médicale (FRM,
NMR-SCoV2-ORF8), and the IR-RMN-THC Fr3050 CNRS.
Work in the lab of BM was supported by the Swiss National
Science Foundation (Grant number 200020_188711), the
Günthard Stiftung für Physikalische Chemie, and the ETH
Zurich. Work in the labs of ABö and BM was supported by a
common grant from SNF (grant 31CA30_196256). This work was
supported by the ETHZurich, the grant ETH40 18 1, and the grant
Krebsliga KFS 4903 08 2019. Work in the lab of the IBS Grenoble
was supported by the Agence Nationale de Recherche (France)
RA-COVID SARS2NUCLEOPROTEIN and European Research
Council Advanced Grant DynamicAssemblies. Work in the
CA lab was supported by Patto per il Sud della Regione
Siciliana–CheMISt grant (CUP G77B17000110001). Part of
this work used the platforms of the Grenoble Instruct-ERIC
center (ISBG; UMS 3518 CNRS-CEA-UGA-EMBL) within the
Grenoble Partnership for Structural Biology (PSB), supported
by FRISBI (ANR-10-INBS-05-02) and GRAL, financed within
the University Grenoble Alpes graduate school (Ecoles
Universitaires de Recherche) CBH-EUR-GS (ANR-17-EURE-
0003). Work at the UW-Madison was supported by grant
numbers NSF MCB2031269 and NIH/NIAID AI123498. MM
is a Ramón y Cajal Fellow of the Spanish AEI-Ministry of
Science and Innovation (RYC2019-026574-I), and a “La
Caixa” Foundation (ID 100010434) Junior Leader Fellow
(LCR/BQ/PR19/11700003). Funded by project COV20/00764
fromthe Carlos III Institute of Health and the SpanishMinistry
of Science and Innovation to MMand DVL. VDJ was supported
by the Boehringer Ingelheim Fonds. Part of this work used the
resources of the Italian Center of Instruct-ERIC at the CERM/
CIRMMP infrastructure, supported by the Italian Ministry for
University and Research (FOE funding). CF was supported by
the Stiftung Polytechnische Gesellschaft. Work in the lab of
JH was supported by NSF (RAPID 2030601) and NIH
(R01GM123249).Peer reviewe
Large-Scale Recombinant Production of the SARS-CoV-2 Proteome for High-Throughput and Structural Biology Applications
The highly infectious disease COVID-19 caused by the Betacoronavirus SARS-CoV-2 poses a severe threat to humanity and demands the redirection of scientific efforts and criteria to organized research projects. The international COVID19-NMR consortium seeks to provide such new approaches by gathering scientific expertise worldwide. In particular, making available viral proteins and RNAs will pave the way to understanding the SARS-CoV-2 molecular components in detail. The research in COVID19-NMR and the resources provided through the consortium are fully disclosed to accelerate access and exploitation. NMR investigations of the viral molecular components are designated to provide the essential basis for further work, including macromolecular interaction studies and high-throughput drug screening. Here, we present the extensive catalog of a holistic SARS-CoV-2 protein preparation approach based on the consortium’s collective efforts. We provide protocols for the large-scale production of more than 80% of all SARS-CoV-2 proteins or essential parts of them. Several of the proteins were produced in more than one laboratory, demonstrating the high interoperability between NMR groups worldwide. For the majority of proteins, we can produce isotope-labeled samples of HSQC-grade. Together with several NMR chemical shift assignments made publicly available on covid19-nmr.com, we here provide highly valuable resources for the production of SARS-CoV-2 proteins in isotope-labeled form