135 research outputs found

    Generic Security Proof of Quantum Key Exchange using Squeezed States

    Full text link
    Recently, a Quantum Key Exchange protocol that uses squeezed states was presented by Gottesman and Preskill. In this paper we give a generic security proof for this protocol. The method used for this generic security proof is based on recent work by Christiandl, Renner and Ekert.Comment: 5 pages, 7 figures, accepted at IEEE ISIT 200

    Smooth Rényi Entropy of Ergodic Quantum Information Sources

    Get PDF

    Proofs of partial knowledge and simplified design of witness hiding protocols

    Get PDF
    Suppose we are given a proof of knowledge P in which a prover demonstrates that he knows a solution to a given problem instance. Suppose also that we have a secret sharing scheme S on n participants. Then under certain assumptions on P and S , we show how to transform P into a witness indistinguishable protocol, in which the prover demonstrates knowledge of the solution to some subset of n problem instances out of a collection of subsets defined by S . For example, using a threshold scheme, the prover can show that he knows at least d out of n solutions without revealing which d instances are involved. If the instances are independently generated, we get a witness hiding protocol, even if P did not have this property. Our results can be used to efficiently implement general forms of group oriented identification and signatures. Our transformation produces a protocol with the same number of rounds as P and communication complexity n times that of P . Our results use no unproven complexity assumptions

    Multi-authority secret-ballot elections with linear work

    Get PDF
    We present new cryptographic protocols for multi-authority secret ballot elections that guarantee privacy, robustness, and universal verifiability. Application of some novel techniques, in particular the construction of witness hiding/indistinguishable protocols from Cramer, Damgaard and Schoenmakers, and the verifiable secret sharing scheme of Pedersen, reduce the work required by the voter or an authority to a linear number of cryptographic operations in the population size (compared to quadratic in previous schemes). Thus we get significantly closer to a practical election scheme

    HIMMO - A lightweight collusion-resistant key predistribution scheme

    Get PDF
    In this paper we introduce HIMMO as a truly practical and lightweight collusion-resistant key predistribution scheme. The scheme is reminiscent ofBlundo et al\u27s elegant key predistribution scheme, in which the master key is a symmetric bivariate polynomial over a finite field, and a unique common key is defined for every pair of nodes as the evaluation of the polynomial at the finite field elements associated with the nodes. Unlike Blundo et al\u27s scheme, however, which completely breaks down once the number of colluding nodes exceeds the degree of the polynomial, the new scheme is designed to tolerateany number of colluding nodes. Key establishment in HIMMO amounts to the evaluation of a single low-degree univariate polynomial involving reasonably sized numbers, thus exhibiting excellent performance even for constrained devices such as 8-bit CPUs, as we demonstrate. On top of this, the scheme is very versatile, as it not only supports implicit authentication of the nodes like any key predistribution scheme, but also supports identity-based key predistribution in a natural and efficient way. The latter property derives from the fact that HIMMO supports long node identifiers at a reasonable cost, allowing outputs of a collision-resistant hash function to be used as node identifiers. Moreover, HIMMO allows for a transparent way to split the master key between multiple parties. The new scheme is superior to any of the existing alternatives due to the intricate way it combines the use of multiple symmetric bivariate polynomials evaluated over ``different\u27\u27 finite rings. We have extensively analyzed the security of HIMMO against two attacks. For these attacks, we have identified the Hiding Information (HI) problem and the Mixing Modular Operations (MMO) problem as the underlying problems. These problems are closely related to some well-defined lattice problems, and therefore the best attacks on HIMMO are dependent on lattice-basis reduction. Based on these connections, we propose concrete values for all relevant parameters, for which we conjecture that the scheme is secure
    • …
    corecore