
S Quarterly Volume 8 (2) 1995, pp. 111 - 127

Proofs of Partial Knowledge and Simplified Design of

Witness Hiding Protocols

Ronald Cramer
Berry Schoenmakers

CW/, P.O. Box 94079, NL-1090 GB Amsterdam, The Netherlands

e-mail: { cramer, berry©cwi . nl}

Ivan Damgard
Matematisk fnstitut, Aarhus University, Ny Munkegade, DK-8000 Arhus C, Denmark

e-mail: i van©daimi . aau. dk

Suppose we are given a proof of knowledge P in which a prover demonstrates
that he knows a solution to a given problem instance. Suppose also that we have
a secret sharing scheme S on n participants. Then under certain assumptions on
P and S, we show how to transform Pinto a witness indistinguishable protocol,
in which the prover demonstrates knowledge of the solution to a subset of n
problem instances corresponding to a qualified set of participants. For example,
using a threshold scheme, the prover can show that he knows at least d out of n
solutions without revealing which d instances are involved. If the instances are
independently generated, this can lead to witness hiding protocols, even if P did
not have this property. Our transformation produces a protocol with the same
number of rounds as P and communication complexity n times that of P. Our
results use no unproven complexity assumptions.

l. INTRODUCTION

In this work1 we assume that we are given an interactive proof where the prover
P convinces the verifier V that P knows some secret. Typically, the secret is the
preimage under some one-way function of a publicly known piece of information.
Thus the secret could be for example a discrete log or an RSA root. Such a
proof is called a proof of knowledge [5], and can be used in practice to design
identification schemes or signature systems.

1 Partly done during Cramer's and Schoenmaker's visit at Aarhus University.

111

"

1 Quarterly ----------------

We assume in the following that the proof of knowledge has a special form
in that the verifier only sends uniformly chosen bits. This is also known as a
public coin protocol. For simplicity, we restrict ourselves to 3-round protocols,
where the prover speaks first (generalization of our results to any number of
rounds is possible). We also assume that the protocol is honest verifier zero
knowledge, i.e. the protocol does not reveal anything (for example about the
prover's secret) to the honest verifier, but it is not necessarily secure against a
cheating verifier.

Numerous protocols are known to satisfy the conditions described above.
Concrete examples are Schnorr's discrete log protocol [12] and Guillou-Quis
quater's RSA root protocol [8]. None of these protocols are known to be zero
knowledge or even witness hiding. In general, a parallelization of a sequential
zero-knowledge proof [7] will often satisfy the conditions.

The second ingredient we need is a secret sharing scheme, i.e. a scheme for
distributing a secret among a set of participants such that some subsets of them
are qualified to reconstruct the secret while other subsets have no information
about it. The collection of qualified subsets is called the access structure. The
secret sharing scheme has to satisfy some properties which will be made more
precise below. Shamir's secret sharing scheme [13] has the properties we need.

Our main result uses a proof of knowledge P, an access structure r for
n participants, and a secret sharing scheme S for the access structure dual
to r to build a new protocol, in which the prover shows that he knows some
subset of n secrets. More precisely, we fix a correspondence between secrets
and participants in r, and P shows that he knows a set of secrets corresponding
to a qualified set in the access structure of r (see Section 3 for details on access
structures). The protocol is witness indistinguishable, i.e. the prover reveals
no Shannon information about which qualified subset of secrets he knows.

As a corollary, we obtain a general method for improving the security of hon
est verifier zero-knowledge protocols. Of course, honest verifier zero-knowledge
is a weak property, and it is much easier to design protocols that are honest
verifier zero-knowledge, than to get more general security properties. On the
other hand, honest verifier zero-knowledge is not in itself sufficient for use of the
protocol in practice. For practical use, we would need at least a witness-hiding
protocol, where it can be shown that whatever the verifier learns will not help
him to compute the prover's secret.

This problem would be solved if we had a general method for transform
ing the honest verifier zero-knowledge protocol into a protocol with stronger
security properties. From our results, a transformation follows that constructs
witness-hiding protocols. Although witness-hiding is a weaker property than
zero-knowledge, it can replace zero-knowledge in many protocol constructions,
including identification schemes. Our transformation preserves the round com
plexity, increases communication complexity by a factor of two and will not
need any computational assumptions. Our results can therefore be seen as
giving a general method simplifying the design of witness-hiding protocols.

After surveying related work, we give in the following two sections more

112

details on the protocols and the secret sharing schemes we consider. Section 4
then contains the main result and corollaries, Section 4.1 gives some concrete
examples, and Section 5 contains an example of an application.

1.1. Related Work
Our techniques are to some extent related to those of De Santis et al. [10].
The models are quite different, however: [10] considers non-interactive zero
knowledge proofs of membership, while we consider interactive proofs of knowl
edge. Also, [10] considers variants of the quadratic residuosity problem, while
we consider any problem that affords a protocol of the right form.

In some recent independent work, De Santis et al. [11] apply techniques
similar to ours to proofs of membership in random self-reducible languages.
This leads to perfect zero-knowledge proofs for monotone Boolean operations
over such languages.

In [4], Feige and Shamir introduce the concepts of witness indistinguishable
and witness hiding protocols and prove the existence of witness hiding protocols
for a large class of problems, including the ones we consider (Corollary 4.4).
This was done using general zero-knowledge techniques and the assumption
that one-way functions exist. Compared to [4], our result shows that if we
start from a proof of knowledge with properties as described above, witness
hiding protocols can be constructed much more efficiently and without using
computational assumptions.

In [3], a transformation from honest verifier zero-knowledge proof was given
for protocols including the type we consider. That transformation produced
zero-knowledge protocols, but on the other hand greatly increased the commu
nication and round complexity so that, contrary to ours, the practical value of
that transformation is quite limited. If the target is zero-knowledge, however,
the increased round complexity seems to be unavoidable.

2. PROOFS OF KNOWLEDGE

Most of our formalism with respect to protocols follows Feige and Shamir [4],
but some of the technicalities have heen omitted in this extended abstract.

Our protocols take place between a prover P and a verifier V, both of which
are interactive probabilistic polynomial time Turing machines. Both prover and
verifier have private auxiliary input tapes. P's auxiliary input is denoted by w.
There is a common input x of length k bits (k is sometimes called the security
parameter). In the following, a probability is called negligible, if as a function
of k, it converges to 0 faster than any polynomial fraction.

The proof system is designed with respect to a binary relation R = { (x, w)},
which can be tested in polynomial time. For any x, its witness set w(x) is the
set of w's, such that (x, w) E R. The purpose of the protocol is for P to show
that it has been given an element of w(x) on its private input tape. We assume
that completeness holds with probability 1, i.e. if indeed w E w(x), then the
verifier always accepts.

113

Qoarterly ----------------

As mentioned, we restrict ourselves to three round public coin protocols for
simplicity (the three round restriction can be easily removed). Conversations
in the protocol will be ordered triples of the form

The second message in the protocol is a random bit string c chosen by the
verifier. We refer to this as a challenge, and to the prover's final message as
the answer. The length of c is such that the number of possible c-values is
super-polynomial in k.

We assume that the protocol satisfies knowledge soundness in the follow
ing sense: for any prover P*, given two conversations between P* and V:
(m1, c,m2), (m1, c', m~), where c =Jc', an element of w(x) can be computed in
polynomial time. We call this the special soundness property. It is easily seen
to imply the standard soundness definition, which calls for the existence of a
knowledge extractor, which can extract a witness in polynomial time from any
prover that is successful with non-negligible probability.

Although special soundness is less general than the standard definition,
all known proofs of knowledge have this property, or at least a variant where
computation of the witness follows from some small number of correct answers.
Assuming special soundness is therefore not a serious restriction.

A protocol which is sound and complete in the above sense is called a proof
of knowledge for the relation R.

Finally, we assume that the protocol is honest verifier zero-knowledge: there
is a simulator S that on input x produces conversations that are indistin
guishable from real conversations with input x between the honest prover and
the honest verifier. For simplicity we assume perfect indistinguishability in
the following; generalization to other fiavors of indistinguishability is easy.
Most known honest verifier zero-knowledge protocols in fact satisfy something
stronger, viz. that there is a procedure that can take any c as input and produce
a conversation indistinguishable from the space of all conversations between the
honest prover and verifier in which c is the challenge. We call this special honest
verifier zcrn-knowledge.

We will later need the concepts of witness indistinguishable (WI) and witness
hiding (WH) protocols, which were introduced in [4]. Informally, a protocol
is witness indistinguishable if conversations generated with the same x but
different elements from w(x) have indistinguishable distributions, i.e. even a
cheating verifier cannot tell which witness the prover is using. If the problem
instance x is generated with a certain probability distribution by a generator G
which outputs pairs (x, w) with w E w(x), we can define the concept of witness
hiding. A protocol is witness hiding over G, if it doe~ not help even a cheating
verifier to compute a witness for x with non-negligible probability when the x
is generated by G. We refer to [4] for details.

With respect to the witness hiding property, we can already now note the
following:

114

PROPOSITION 1. Let P be a three ro'Und p'ublic coin proof of knowledge for
relation R. If P is honest verifier zero-knowledge, then P is witness ind'istin
g1tishable.

Proof We trivially have WI for conversations with the honest verifier, since
conversations generated with any witness will lead to the same distribution as
produced by the simulator. But then conversations using different witnesses
will still have the same distribution if we restrict to conversations with a fixed c
occurring as the challenge. Since the only difference between the honest verifier
and a general one lies in the distribution with which c is chosen, we get also
WI against an arbitrary verifier. D

In many concrete cases, this proposition is not interesting because there
is only one witness, in which case WI is trivial and cannot imply anything.
Nevertheless, Proposition 1 will be needed in the following for technical reasons.

2.1. An Example
As a concrete example of a protocol with the properties we need, we present
Schnorr's protocol from [12] for proving knowledge of a discrete log in a group
G of prime order q. Let g # 1, and let x = gw be the common input. P is
given w as private input. In the language of the above section, the protocol is
a proof of knowledge for the relation that consists of pairs ((x, g, G), w) such
that x = gw in C. Then the protocol works as follows:

1. The prover chooses z at random in [O .. q), and sends a= gz to V.
2. The verifier chooses cat random in [O .. q), and sends it to P.
3. P sends r = (z +cw) mod q to V, and V checks that gr= axe.

Completeness trivially holds with probability 1. Correct answers to two differ
ent c-values give two equations r 1 = z + wc1 mod q and r 2 = z + wc2 mod q so
we find that w = (r 1 - r 2) / (c1 - c2) mod q. So special soundness holds also.
Finally, note that by choosing c and r at random, we can make a simulated
conversation (gr x- c, c, r) between the honest verifier and prover. Since c can
be chosen freely, we even get special honest verifier zero-knowledge.

3. SECRET SHARING

A secret sharing scheme is a method by which a secret s can be distributed
among n participants, by giving a share to each participant. The shares are
computed in such a way that some subsets of participants can, by pooling
their shares, reconstruct s. These subsets are called qualified sets. Participants
forming a non-qualified set should be able to obtain no information whatsoever
about s. Such a secret sharing scheme is called perfect.

The collection of qualified sets is called the access strnct'Ure for the secret
sharing scheme. Clearly if participants in some set can reconstruct s, so can
any superset, and therefore in order for the scheme to make sense, it must be

115

Quarterly ---------------

the case that if A is a qualified set, then any set containing A is also qualified.
An access structure with this property is called monotone.

A special case of monotone access structures is structures containing all
subsets larger than some threshold value. Such structures are called threshold
structures.

Any monotone access structure has a natural dual structure. This concept
was first defined in [14].

DEFINITION 1. Let r be an access structure containing subsets of a set M. If
A C M, then A denotes the complement of A in M. Now I'*, the dual access
structure is defined as follows:

A Er*~ A rt.r.

The next propositions follow directly from the definition.

PROPOSITION 2. The dual I'* of a monotone access structure is monotone as
well, and satisfies

(r*)* = r.
Furthermore, if r is a threshold structure, then so is I'*.

PROPOSITION 3. Let f be monotone. A set is qualified in f exactly when it
has a non-empty intersection with every qualified set in I'*.

In the next section, we will assume we are given a protocol of the form
described in Section 2. For each input length k we will assume we are given
a monotone access structure r(k) on n participants, where n = n(k) is poly
nomially bounded function of k. Thus we have a family of access structures
{r(k)I k = 1, 2, ... }. We can then build a new protocol for proving statements
on n problem instances provided we have a perfect secret sharing scheme S(k)
for r(k)* satisfying certain requirements to be defined below.

Let D(s) denote the joint probability distribution of all shares resulting
from distributing the secret s. For any set A of participants, DA(s) denotes
the restriction of D (s) to shares in A. As S (k) is perfect, D A (s) is independent
from s for any non-qualified set A. So we will write D A instead of D A (s),
whenever A is non-qualified. The requirements then are:

1. All shares generated in S(k) have length polynomially related to k.
2. Distribution and reconstruction of a secret cau be done in time polynomial

ink.
3. Given secret s and a full set of n shares, one can test in time polynomial

in k that the shares are all consistent with s, i.e. that all qualified sets of
shares determine s as the secret.

4. Given any secret s, a set of shares for participants in a non-qualified set
A (distributed according to DA) can always be completed to a full set of
shares distributed according to D(s) and consistent with s. This completion
process can be done in time polynomial in k.

116

'c Qu•rt•oly ---------------

5. For any non-qualified set A, the probability distribution D A is such that
shares for the participants in A are independent and uniformly chosen.

DEFINITION 2. A perfect secret sharing scheme satisfying requirements 1-4
is called semi-smooth. If, in addition, requirement 5 is satisfied it is called
smooth.

It is natural to ask if for any family of monotone access structures there is
a family of smooth secret sharing schemes. This question is easy to answer
in case of threshold structures. In that case it is clear that Shamir's secret
sharing scheme (13] can be used. This scheme is even ideal, i.e. the shares are
of the same length as the secret. In Shamir's scheme, the secret is an element
in a finite field GF(q). A secret is shared by choosing a random polynomial
f(X) = ad_1xd-l +· · ·+0!1X +s, where sis the secret, n is fixed and different
points pi, ... , Pn in G F (q) are chosen, and the i-th share is f (Pi). Given d or
more shares, f and therefore s can be found by Lagrange interpolation. With
d - 1 or fewer shares, s is completely unknown.

As an alternative to Shamir's scheme we have the following secret sharing
scheme, which is also ideal. Again s E GF(q) is the secret, but the i-th share
now is a number c; E GF(q), 1 :5 i ::::; n, such that Be = se 1 • Here, B is
an - d + 1 by n matrix over GF(q), e = (c1, ... ,en), and e 1 = (1,0, ... ,0)
is a vector of length n - d + 1. Matrix B should be such that any n - d + 1
columns are linearly independent (which implies that the rank of Bis equal to
n - d + 1). An appropriate choice for B is therefore the first n - d + 1 rows of
a Vandermonde matrix over GF(q), say:

1
2

The secrets can be recovered from any d shares as follows. Since Be= se1 ,

it follows that s = I:~=l c;. Furthermore, when d entries of c are known, the
remaining n - d entries follow uniquely from the equation B' e = o, where B' is
the matrix B with the first row removed and o denotes a vector of n - d zeros.
This is true because B' is an - d by n matrix for which any n - d columns
are linearly independent. In case less than d shares are known, the remaining
shares can be chosen such that any secret is matched.

For more general families of access structures, the answer to this question
depends on whether the parameter n is a constant, or is allowed to increase
polynomially as a function of k.

In case n is a constant, there exists a smooth secret sharing scheme for
any monotone access structure. For any minimal qualified set A, we do the
following: choose si, ... , SjA[at random under the condition that s1 EB · · · EB
slAI = s, and give one si to each participant in A. This scheme was first
proposed in [9].

117

------------- c/·.1Quarterly -------·-------

Any qualified set can reconstruct the secret since it must contain a minimal
qualified set. By monotonicity, no non-qualified set contains a qualified one,
so the secret cannot be reconstructed by a non-qualified set. It is easy to
check that all properties above are satisfied by this scheme: the size of shares
and the work needed in this scheme is linear in k, but the constant involved
depends of course on n and on the access structure. However, the number of
possible subsets is exponential in n, so for non-constant n this scheme will not
necessarily be smooth.

For non-constant n, it is an open question whether there are secret sharing
schemes of the kind we need for any sequence of access structures. Benaloh
and Leichter [1] have proposed secret sharing schemes for more general access
structures defined by monotone formulae, i.e. Boolean formulae containing only
AND and OR operators.

Consider a monotone formula F with n variables. Any subset A of n par
ticipants corresponds in a natural way to a set of values of the n variables by
assigning a variable to each participant and let each variable be 1 if the corre
sponding participant is in A and 0 otherwise. We let F(A) be the bit resulting
from evaluating F on inputs corresponding to A. Then we can define an access
structure f F by

A E fp {:} F(A) = 1

We let F* denote the dual formula, which results from replacing in Fall AND
operators by OR's and vice versa. It is not hard to show the following propo
sition.

PROPOSITION 4. If F is monotone then r F is also monotone. Conversely, for
any monotone access struct'Ure r, there is a monotone formula F, such that
r = fp. We have that (fp)* = fp·.

In [1], a generic method is given that, based on any monotone formula
F, builds a perfect secret sharing scheme for the access structure r F. The
formula F may contain general threshold operators, in addition to simple AND
and OR operations. For a polynomial size formula, it can be shown that the
secret sharing scheme from [1] satisfies all of the above requirements except
possibly requirement 5. This leads to:

PROPOSITION 5. Let {f(k)} be a family of access structures such that f(k) =
r Fk for a family of polynomial size monotone formula { Fk}. Then there exists
a family of semi-smooth secret sharing schemes for {f(k)}.

A final comment before we go on to the main result is that we will need to
distribute secrets of length t = t(k) bits, where t is polynomially bounded in
k. This does not impose any restrictions on S(k) because any secret sharing
scheme can distribute secrets of any length by running an appropriate number
of copies of the scheme in parallel. We therefore assume that S(k) always
distributes secrets of length t. Note that, if n is constant as a function of k,
only one access structure and secret sharing scheme are involved.

118

4. MAIN RESULT

The next theorem describes the construction of a proof of knowledge from a
basic proof of knowledge P for a relation R and a family of secret sharing
schemes. In the constructed proof of knowledge both prover and verifier are
probabilistic polynomial time machines, using the prover and verifier of P,
respectively, as subroutines.

For the statement of the result we need some notation. Let r be an access
structure on n participants. Then Rr' is a relation defined by:

((x1, .. ., Xm), (w1, .. ., Wm)) E Rr

iff all x;'s are of the same length, say, k bits, m = n(k), and the set of indices
i for which (:i:;, w;) E R corresponds to a qualified set in f(k). In a proof of
knowledge for relation Rr the prover thus proves to know witnesses to a set of
the X;. 's corresponding to a qualified set in f.

THEOREM l. Let P be a three round public coin, honest verifier zr,ro-knowledge
proof of knowledge for relation R, and assume that P has the special sound
ness property. Let {r(k)} be a family of monotone access strucfares and let
{ S (k)} be a family of smooth secret sharing schemes such that the access struc
ture of S(k) is r(k)*. Then there exists a three r·o1md p1tblic coin, witness
ind·ist·inghu·isable proof of knowledge for relation Rr.

Proof To improve readability we drop in the following the dependency on
k from the notation, and write S = S(k), r = f(k) and n = n(k). We will
distribute secrets of length t in S. If the length of any share resulting from
this is larger than t, we will replace P by a number of parallel executions of P
to make sure that a challenge is at least as long as any share.2 Note that this
does not violate the honest verifier zero-knowledge nor the special soundness
property. A basic idea in the following will be to interpret a challenge as a share.
If challenges are longer than shares, we will simply take the first appropriate
number of bits of the challenge to be the corresponding share. If c is a challenge,
share(c) will denote the corresponding share.

The following now describes the new protorol:

1. Let A E r be the set of indices i such that P knows a witness for x;.
For each i E A, P runs simulator S on input x;. Let (ml, c.i, m2) be the
resulting conversation produced by S. P sends to V m'i, i = 1, ... ,n,
where m[is the value just produced by S if i E A, and otherwise mi is
what the prover in P would send as m 1 given a witness for input x.;.

2. V chooses at-bit strings at random and sends it to P.
3. Consider the set of shares {share(c;)li E A} that correspond to the c;

from the simulation in Step 1. As A is non-qualified in f*, requirement 4
guarantees that P can complete these shares to a full set of shares consistent

2 For some secret sharing schemes, there is a lower bound on the length of shares in terms
of n. For Shamir's scheme, the length of shares is at least log2 (n + 1). If t is smaller than
this bound, we can again replace P by a number of parallel executions.

119

,'Quarterly -----------------

with s. P then forms challenges Ci for indices i E A, such that share(c;)
equals the share produced in the completion process. This is done by simply
copying the bits of the shares and padding with random bits if necessary.
In Step 1, S has produced a final message m~ in P for i E A. For i E A,
P knows a witness for x;, and can therefore find a valid m~ for mi and
c; by running the prover's algorithm from P. Finally, P sends the set of
messages c;, m~, i = 1, ... , n to V.

4. V checks that all conversations (mi, c;, m~) now produced would lead to
acceptance by the verifier in P, and that the shares share(c;) are consistent
with secret s. He accepts if and only if these checks are satisfied.

It is clear from the assumptions on S that P and V need only poly-time
and access to the prover and verifier of P. It therefore remains to be seen that
the protocol is a proof of knowledge and that it is witness indistinguishable.

Completeness is trivially seen to hold by inspection of the protocol. For
soundness, assume that some prover P* for a given first message {mi I i =
1, ... , n} can answer correctly a non-negligible fraction of the possible choices
of s. This means that by rewinding P*, we can efficiently get correct answers
to two different values, say s and s'.3 Let the shares of s and s' sent in the
protocol be share(c;) and share(cD, i = 1, ... , n, respectively. Then for every
qualified set BE f*, there must be an i E B, such that share(c;) 'f. share(c';)
since otherwise it would follow that s = s'. But then we also have that c; 'f. c;
and so by assumption on P, we can compute a witness for x;. So P* knows
a witness in every qualified set of r*. On account of Proposition 3 the set of
witnesses we thus extract is a qualified set in the access structure r.

As for witness indistinguishability, we have to show that the distribution
of the conversation is independent of which qualified set A E r the prover
uses. First observe that the distribution of each mi depends only on x; and
equals the distribution of the prover's first message in an execution of P with
x; as input. This follows from Proposition 1, using that P is honest verifier
zero-knowledge. In particular, the joint distribution of the m\ 's, and hence the
verifier's choice of s, is independent of A.

Since the set {share(c;)} is constructed by completing a set of uniformly
distributed shares in a non-qualified set of S, the joint distribution of the
share(c,;)'s is simply D(s). Since the c;'s are constructed from the shares by
possibly padding with random bits, the joint distribution of the c; 's is inde
pendent of A. Finally, Proposition 1 implies that the distribution of each m~
depends only on x;, mi and c;, and is therefore also independent of A. D

If the secret sharing schemes are ideal, the communication complexity of the
protocol in Theorem 1 is at most t bits plus n times that of P. Note that instead
of taking several instances of the same proof of knowledge, it is also possible to
combine different proofs of knowledge. In this way, one may for instance prove
knowledge of either a discrete log or an RSA root without revealing which.

3 There are 2t possible s-values which is super-polynomial in k, whence any polynomial
fraction of these contain at least 2 values for all large enough k.

120

· Quarterly --------------

THEOREM 2. As Theorem 1, but with P special honest verifier zero-knowledge
and S(k) semi-smooth.

Proof In this case the protocol from Theorem 1 is changed as follows. In Step
1, the prover uses S to distribute an arbitrary secret, and discards all shares
in A. The remaining shares are distributed according to JJ;r. He then runs the
special simulator on the corresponding challenges. Note that the completion
process can still be performed on account of requirement 4, and as before, the
honest prover can counter any challenge s by the verifier. Soundness is proven
in the same way as before. Therefore, the modified scheme still constitutes a
proof of knowledge for relation Rr.

As for witness indistinguishability, we only have to note that the distribution
of any mi generated by the (special) simulator is the same for any particular
challenge value ci used, because mi in a real execution of P is independent
of the challenge. Therefore the joint distribution of the mi's is the same as
in the case of Theorem 1. The rest of the proof is therefore the same as for
Theorem 1. D

The witness indistinguishable property of the protocol from Theorem 1
leads us to a generalization of Theorem 4.3 of [4]. To state the result, we need
to introduce the concept of an invulnerable generator G for a relation R. Such
generators were first introduced in [6] and later used in slightly modified form
in [4]. Such a generator is a probabilistic polynomial time algorithm which
outputs a pair (x, w) E R. The generator is invulnerable if no probabilistic
polynomial time enemy given only x can compute an element in w(x) with
non-negligible probability, taken over the coin flips of both G and the enemy.

Thus, asserting the existence of an invulnerable generator for a relation is
a way of stating that it is feasible to generate hard, solved instances of the
underlying computational problem.

For any generator G, we let en denote the generator that produces an n
tuple of pairs in R by running G independently n times in parallel. We will
also need some notation for access structures: for a monotone access structure
r, we let the sets in r correspond to subsets of the index set N = { 1, ... , n}.
Now let the set Ir C N be defined by: i E Ir iff i is contained in every qualified
set in r. It is easy to see by monotonicity of r that i E Ir precisely if N \ { i}
is not qualified.

THEOREM 3. Let P be a witness indistinguishable proof of knowledge for the
relation Rr, where r = {f(k)} is a family of monotone access structures on
n(k) participants, and Risa binary relation. If for all k, r(k) contains at least
two different minimal qualified sets, and there is an invulnerable generator G
for R, then P is witness hiding over G11<kl.

Proof We follow the line of reasoning from Thm. 4.3 of [4]. Suppose we
are given an probabilistic polynomial time enemy A that has non-negligible
probability of computing a witness, using the honest prover in the scheme from
Theorem 1 as a subroutine. We show that A can be compiled into an algorithm

121

------------- ':.,-.... ,.,,. ----------------
that solves with non-negligible probability random instances x generated by G,
thus contradicting the invulnerability of the generator (see [4]).

From the assumption on I'(k) = r (at least two minimal qualified sets)
it follows that N \ Ir must contain at least two elements, and that Ir is not
qualified.

Our compilation now works as follows:

1. Determine the set Ir. This can be done by recalling that soundness of P
allows the prover to convince the verifier with only negligible probability if
the prover only knows witnesses in a non-qualified set. So for each i, we
can use G to generate a set of problem instances and emulate the protocol
with N \ {i} corresponding to the set of known witnesses. If i E Ir, then
this fails almost always, otherwise it fails with negligible probability.

For simplicity, we argue in the following as if this procedure determines the
correct fr with probability 1. Taking into account the small probability
of making a mistake introduces only a negligible change in the success
probability of our algorithm.

2. Recall that our input is a problem instance x generated by G. We now form
an n tuple of instances (x1 , ... , xn) as follows: choose at random j E N \ Ir
(which is non-empty), and let Xj = x. For all other indices i, run G to
produce a solved instance Xi and save the witness wi.

3. Give x 1, ... , Xn as input to A. When A needs to interact with the prover,
we simply simulate the prover's algorithm from Theorem 1. This can be
done because we know witnesses of all instances except x j, and the fact
that j ef. Ir guarantees that N \ {j} is qualified.

4. If A is successful, it outputs a witness for the relation Rr which by definition
is a set of witnesses { Wi} corresponding to a qualified set A in r. If j E A,
we have success and can output Wj· Else output something random.

We now show that this compilation finds a witness for x with non-negligible
probability. First note that the joint distribution of the Xi 's we give to A
is the same as in an ordinary interaction with the prover. Therefore A is
successful with non-negligible probability. We therefore only have to bound
the probability that j is in A, the set of witnesses we get from A. Since fr
is not qualified, A must contain at least one index not in lr. By witness
indistinguishability, A has no information about which j in N \ Ir we have
chosen, and so the probability that j E A is at least 1/IN \ Ir/. Hence if A
has success probability E, we have success probability at least e/n, which is
non-negligible. D

Note that an access structure has at least two minimal qualified sets ex
actly when the corresponding minimal CNF-formula· contains at least one OR
operator.

Note also that this result only shows that an enemy cannot compute a
complete qualified set of witnesses. It does not rule out that the protocol
could help him to compute a small, non-qualified set. Ideally, we would like to

122

prove that the enemy cannot compute even a single witness. With a stronger
assumption on the access structure, this can be done:

COROLLARY 1. Let P be a witness indistinguishable proof of knowledge for the
relation Rr, where r = {r(k)} is a family of monotone access structures on
n(k) participants, and Risa binary relation. Suppose that for all k the set Ir(k)

is empty. Suppose finally that there is an invulnerable generator G for R, and
that input.s for P are generated by G"(kJ. Then no probabilistic polynomial time
enemy intemcting with the honest prover can with non-negligible probability
compute a witness for any of the x; in the input to the protocol.

Proof Since lr(k) is non qualified, there are at least two minimal sets, and
therefore the proof is the same as for Theorem 3, except that it follows from the
assumption that the index j is always chosen among all indices. Hence if the
enemy outputs at least one correct witness, there is a non-negligible probability
of at least 1/n that this is the witness we are looking for. D

A certain special case of Theorem 1 is interesting in its own right:

COROLLARY 2. Assume we have a proof of knowledge P for relation R as de
scribed in Section 2. Then for any n, d there is a protocol with the same mund
complexity as P in which the prover shows that he knows d out of n witnesses
without revealing which d witnesses are known.

Proof Use Theorem 1 with, for example, Shamir's secret sharing scheme for
S and a threshold value of n - d + 1. D

COROLLARY 3. Consider the protocol guaranteed by Corollary 2, let n = 2 and
d = 1. i. e. the prover proves that he knows at least 1 out of 2 solutions. For
any generator G generating pairs in R, th'iS protocol is witness hiding over G2 .

Proof Since protocols constructed from Theorem 1 are always witness indis
tinguishable, we can use Theorem 4.2 of Feige and Shamir[4]. D

Note that for this corollary, we do not need the assumption that G is invul
nerable, as in Theorem 3.

To build the protocol of Corollary 3, we need a 2 out of 2 threshold scheme.
Such a scheme can be implemented by choosing random shares c1 , c2 such that
c1 ffi c2 equals the secret. Therefore, in the simple case of Corollary 3, the
protocol constructed by Theorem 1 simply becomes a game where the verifier
chooses a random s, and the prover shows that he can answer correctly a pair
of challenges c1 , c2, such that s = c1 ED c2 . In the prover's final me::;sagc, he
only has to send c1 because the verifier can then compute c2 himself. Hence
the communication complexity of the new protocol is exactly twice that of P,
whence the new protocol is just as practical as P. See also the examples below.

COROLLARY 4. Let {r(k) = r F"} be a family of monotone access structure
on n(k) participants defined by a polynomial size family of formulas {Fk}, and

123

Prover Verifier
(x; == gw', 1 '.S i :::'.: d)

Solve cq, ... ,an-d s.t. f(O) == s

and f(i) == c; for d+l :::; i:::; n

T'i :=::: { Zi + f (i)w;
Zi

'1 ::::: i ::::: d
, d+l:::; i:::; n

s
<------

0<1, ... ,an-d

T1, ... , Tn

r ? f(·i)
9 i =':: a;X; ,

1:::; i:::; n

FIGURE 1. Proof of knowledge of d out of n secrets using a polynomial.

let P be a proof of knowledge with properties as described in Section 2. Sup
pose P is special honest verifier zero-knowledge. Then there exists a witness
indistinguishable proof of knowledge in which the prover proves that he knows
a subset of solutions to n(k) problem instances that is qualified in f(k). Let
M(k) be the maximal number of occurrences of a variable in F(k). Then the
communication complexity of the new protocol is at most nM(k) times that of
P plus t bits.

Proof By Proposition 2, f(k) * = r F,;, and since the size of FJ: is the same as
that of Fk, we can use the secret sharing scheme guaranteed by Proposition 5
when we do the construction of Theorem l. The statement on the communi
cation complexity follows from the fact that the shares of the secret sharing
scheme constructed in [1] from F(k) have maximal size tM(k) bits, so that we
have to use M(k) parallel executions of Pin the construction of Theorem l. D

4 .1. Examples
We present two instances of the general case for threshold structures (cf. Corol
lary 2), using Schnorr's protocol as the basic proof of knowledge (cf. Sec
tion 2.1). As secret sharing schemes we use either Shamir's scheme or the
alternative scheme as described in Section 3. The protocols use threshold val
ues of n- d+ 1 to obtain proofs of knowledge ford out of n secrets. Polynomial
f in Figure 4.1 is therefore of degree n - d:

124

Prover
(x; = gw', 1 :S i :S d)

z1, ... , Zn ER 7L.q
cd+1, ... ,c,, En "ll..q

a'i := { gZi ' 1 :S i :S d
gz'x;'" , d+l :Si :Sn

Solve c1, ... , cd s.t. Be= se1

{
Zi + C(W·i

r.i :==
Zi

,l:Si:Sd
, d+ 1 :S i :S n

<11, ... , an

8

C1, ... ,Cn-d

'f'1, ... 'rn

Verifier

Solve Cn-d+1, ... , Cn

s.t. Be= se1
? c.

gr·i == a.ix i 1'

l:Si:Sn

FIGURE 2. Proof of knowledge of d out of n secrets using a matrix.

And matrix B in Figure 4.1 is of size d by n:

1
2

l

) n

nd-1

For convenience, we assume that the prover knows the first d witnesses called
W1, ... ,Wti.

Compared to the general description in the proof of Theorem 1, the pro
tocols have been optimized to reduce the communication complexity. That is,
in Figure 4.1 the coefficients of f are sent to the verifier rather than f (i), for
i = 1, ... , n. Similarly, in Figure 4.1, only the first n - d entries of care sent
to the verifier rather than all entries of c.

It is interesting to compare the number of multiplications required for the
computations involving f and B. In Figure 4.1, finding f requires about (n-rl) 2

multiplications. Furthermore, there are n + d applications of f, requiring n - d
multiplications for each application. The grand total is therefore 2n(n - d)
multiplications. In Figure 4.1, both the prover and verifier compute a vector
of length d requiring nd multiplications each. The grand total for this scheme
is therefore 2nd multiplications.

From this we conclude that Shamir's scheme should be used for d > n/2
and that the alternative scheme should be used otherwise.

125

------------- I \\'IQu-rly ---------------

5. APPLICATION TO IDENTIFICATION AND SIGNATURES
Suppose we have n users, for example employees of a company, such that the
i-th user has a public key Xi and secret key Wi E w(xi)· Suppose also that
certain subsets of users are qualified in the sense that they are allowed to
initiate certain actions, sign letters on behalf of the company, etc. This defines
an access structure on the set of users. Theorem 1 now gives a way in which
a subset of users can collaborate to identify themselves as a qualified subset,
without revealing anything else about their identities. This makes good sense,
if they are to assume responsibility on behalf of the company, rather than
personally.

This also extends to digital signatures, since by using a hash function, any
three round proof of knowledge as the one produced by Theorem 1 can be
turned into a signature scheme by computing the challenge as a hash value of
the message to be signed and the prover's first message (this technique was
introduced in [5]). By this method, a signature can be computed which will
show that a qualified subset was present, without revealing which subset was
involved. This may be seen as a generalization of the group signature concept,
introduced by Chaum and Van Heyst [2]. One aspect of group signatures which
is missing here, however, is that it is not possible later to "open" signatures to
discover the identities of users involved.

6. OPEN PROBLEMS
Two obvious open problems remain. First, can Theorem 1 be proved assuming
ordinary soundness of 'P, and not special soundness? We remark that this can
be done at the expense of assuming existence of a bit commitment scheme; it
is also interesting to note that if one aims at proofs of membership and not
proofs of knowledge, special soundness is not needed. A second question is
whether Theorem 1 can be generalized to other types of protocols than public
coin protocols.

ACKNOWLEDGEMENT
We thank Douglas Stinson for helping us with information about results on
secret sharing schemes, and Matthew Franklin for useful discussions and com
ments on the presentation.

REFERENCES
1. J. BENALOH & J. LEICHTER (1988). Generalized Secret Sharing and Mono

tone Functions, Proc. of Crypto 88, Springer Verlag LNCS series, 25-35.
2. D. CHAUM & E. VAN HEYST (1991). Group Signatures, Proc. of EuroCrypt

91, Springer Verlag LNCS series.
3. I. DAMGARD (1993). Interactive Hashing can Simplify Zero-Knowledge

Protocol Design Without Complexity Assumptions, Proc. of Crypto 93,
Springer Verlag LNCS series.

126

-------------- UVl-rterly --------------

4. U. FEIGE & A. SHAMIR (1990). Witness Indistinguishable and Witness
Hiding Protocols, Proc. of STOC 90.

5. U. FEIGE, A. FIAT, & A. SHAMIR (1988). Zero-Knowledge Proofs of Iden
tity, Journal of Cryptology 1 (1988) 77-94.

6. M. ABADI, E. ALLENDER, A. BRODER, J. FEIGENBAUM, & L.
HEMACHANDRA (1988). On Generating Solved Instances of Computational
Problems, Proc. of Crypto 88, Springer Verlag LNCS series.

7. s. GoLDWASSER, s. MICALI, & c. RACKOFF (1989). The Knowledge Com
plexity of Interactive Proof Systems, SIAM Journal on Computing 18, 186-
208.

8. L. GUILLOU & J.-J. QUISQUATER (1988). A Practical Zero-Knowledge
Protocol fitted to Security Microprocessor Minimizing both Transmission
and Memory, Proc. of EuroCrypt 88, Springer Verlag LNCS series.

9. M. ITO, A. SAITO, & T. NISHIZEKI (1987). Secret Sharing Scheme Real
izing any Access Structure, Proc. Glob. Com.

10. A. DE SANTIS, G. DI CRESCENZO, & G. PERSIANO (1993). Secret Sharing
and Perfect Zero-Knowledge, Proc. of Crypto 93, Springer Verlag LNCS
series.

11. A. DE SANTIS, G. PERSIANO, M. YUNG. Formulae over Random Self
Reducible Languages: The Extended Power of Perfect Zero-Knowledge,
manuscript.

12. C.P. SCHNORR (1991). Efficient Signature Generation by Smart Cards,
Journal of Cryptology 4, 161-174.

13. A. SHAMIR (1979). How to Share a Secret, Communications of the ACM
22, 612-613.

14. G.J. SIMMONS, W.A. JACKSON, & K. MARTIN (1991). The Geometry of
Shared Secret Schemes, Bulletin of the Institute of Combinatorics and its
Applications I, 71-88.

127

