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Abstract-We investigate the recently introduced notion of
smooth Renyi entropy for the case of ergodic information sources,
thereby generalizing previous work which concentrated mainly
on i.i.d. information sources. We will actually consider ergodic
quantum information sources, of which ergodic classical infor-
mation sources are a special case. We prove that the average
smooth Renyi entropy rate will approach the entropy rate of a
stationary, ergodic source, which is equal to the Shannon entropy
rate for a classical source and the von Neumann entropy rate
for a quantum source.

I. INTRODUCTION

The elegant notion of smooth Renyi entropy was introduced
recently by Renner and Wolf in [6] for classical information
sources, and the natural extension to quantum information
sources was defined by Renner and Konig in [5]. In these two
papers and further work by Renner and Wolf [7], [4], many
properties of smooth Renyi entropy and smooth min-entropy
and smooth max-entropy in particular have been studied in
detail.
A central property of smooth Renyi entropy proved in these

works is that for memoryless (i.i.d.) information sources, the
average smooth Renyi entropy rate will approach the entropy
rate of the source, which is equal to the Shannon entropy for a
classical source and the von Neumann entropy for a quantum
source. Whereas, in general, the average (conventional) Renyi
entropy rate of a memoryless source does not converge to the
source's entropy rate.

In this paper we extend the study of smooth Renyi entropy
to the more general class of stationary, ergodic sources rather
than memoryless sources. We will prove that for both the
classical and the quantum case that the average smooth Renyi
entropy rate will approach the Shannon and the von Neumann
entropy rate, respectively. We will do so by first treating the
classical case and then reducing the quantum case to the
classical one without losing generality.

In general, smooth Renyi entropy of order a > 1, and a
oc (min-entropy) in particular, is of cryptographic relevance
(e.g., for randomness-extraction), and smooth Renyi entropy
of order a < 1, and a = 0 (max-entropy) in particular, are
relevant to data compression (minimum encoding length). In
these contexts, the importance of smooth Renyi entropy is that
its rate is basically equal to the Shannon/von Neumann entropy

rate for an i.i.d. source (and for ergodic sources as well, as we
show in this paper). This is not the case for conventional Renyi
entropy. More generally, as shown in the papers by Renner et
al. mentioned above, smooth Renyi entropy behaves much as
Shannon/von Neumann entropy does.

In this paper we focus on the unconditional case, whereas
much of the abovementioned work by Renner et al. treats the
more general conditional case. We leave the extension to the
conditional case for future work. However, we do consider
two notions of e-closeness, one based on trace distance (also
known as variational or statistical distance) and one based on
non-normalized density matrices (or probability distributions),
where the latter is more suitable to handle the conditional
case.' Thus, we believe that our results can be extended to the
conditional case as well.
We also note that Renner [4] presents a different kind of

generalization of i.i.d. quantum sources, namely by analyzing
the smooth min-entropy of symmetric (permutation-invariant)
quantum states. Or, more precisely, states in a symmetric
subspace of 'HX are considered, for n e N. See [4, Chapter 4]
for details, which also covers the conditional case.

II. PRELIMINARIES

Throughout this paper we use IP and Q to denote probability
distributions with over the same finite or countably infinite
range Z. Similarly, we use p and or to denote density matrices
on the same Hilbert space of a finite or countably infinite di-
mension. These probability distributions and density matrices
are not necessarily normalized (e.g., Ez P(z) < 1 if P is
non-normalized and tr(p) < 1 if p is non-normalized).

For ease of comparison we state all the preliminaries
explicitly for the classical case as well as for the quantum
case.

Definition ] (Classical Renyi entropy): The Renyi entropy
of order a e [0, oc] of probability distribution P is

H,(SP)) 1 log I (Z)
zez

'The trace distance was originally used in [6], [5]. The use of non-
normalized probability distributions was also shown in the full version of
[6] and used in [7]. In this paper, we extend this to the use of non-normalized
density matrices in the quantum case.
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for 0 <.a < oc, a :t 1, and Hj(P) = lim Ho3(P)
otherwise.
Hence, Ho (P) = log {z C Z : P(z) > 0} l, H, (P) H (P)
(Shannon entropy) and Ho, (P) =-log maxzEz P(z).

For a random variable Z we use Hei, (Z) as a shorthand for
Hei, (Pz), where Pz is the probability distribution of Z.

Smooth Renyi entropy was introduced in [6] for the classical
case. For e > 0, let B6 (P) denote either the set of probability
distributions which are e-close to IP, BE(lP) = {Q: (Ip, Q) <
e}, or the set of non-normalized probability distributions which
are e-close to P, B136(P) = {Q: Ez

Q(z) > 1-,VzezO <
Q(z) < P(z)}. The first notion of e-closeness, based on the
statistical distance 6(1P, Q) 2 I (z) Q(z) l,was used
in [6]. The second notion was mentioned in the full version
of [6], and used in [7].

Definition 2 (Classical smooth Re'nyi entropy, [6]): The E-
smooth Renyi entropy of order a e [0,1) U (1, oc] of a
probability distribution P is

He6 (D _ infQ e1,(p) Ho,(Q), O < a < 1,
H P ) lSUP e13(P) HQ(Q) 1 < a < oc.

At the end of this paper, we point out that Ho (P) will
actually vary, depending on which notion of e-closeness is
used, leading to a maximum difference of jal log(l-e).

For a probability distribution IP on, e.g., Z = {0, 1}, we
define IP' as the probability distribution corresponding to the
restriction of the "infinite volume" distribution 1P to the finite
volume {0O,...,n -1}.

Definition 3 (Entropy rate of a classical source): For a
stationary source given by its probability measure 1P, we
define

h (P) = lim H(P ),

ho (P) = lim H (pn).
We will actually prove that ho (P) = h (P) as e -> 0.
We use the standard notion of typical sequences and typ-

ical sets, which are defined for any information source (not
necessarily i.i.d.). See, for instance, [2] or [3].

Definition 4 (Typical sequences, typical set): A sequence
Zn {0, l }n, n e N, is called e-typical if

e-n(h(P)+e) < p(zn) < e-n(h(P)-e)

The typical set Se(n) is the set of all e-typical sequences from
{0, 1}n.

In this paper we need the following consequence of the AEP,
where we refer to [2, Section 16.8] for the AEP for ergodic
sources (known as the Shannon-McMillan-Breiman theorem).

Theorem ] (Classical AEP bounds): Let P be a stationary,
ergodic probability distribution on Z ={0, 1 N. Let e > 0.
Then, for sufficiently large n,

p(,Te(n)) > 1 c,

and
l,T(n) < en(h(PF)+e).

Definition 5 (Quantum Re'nyi entropy): The Renyi entropy
of order a e [0, oc] of a density matrix p is

Sei (p) log tr(pV)
for 0 <.a < oo, a 7 1, and Sc,(p) = limoa So (p)
otherwise.
Hence, SO(p) = logrank(p), Sl(p) S(p) =-tr(plogp)
(von Neumann entropy) and S. (p) -log Amax (P).

Analogous to the classical case, smooth Renyi entropy is
defined in the quantum case (see [5]). We use either the set
of density matrices which are e-close to p, 36 (p) {=f:
6(p, or) < e} or the set of non-normalized density matrices
which are e-close to p, B36(p) = {fo: tr(or) > 1- , 0 < or <
p}. The first notion of e-closeness, based on the trace distance
6(p, C) = tr( p -o), was used in [5]. The second notion is
introduced here, and will actually be used in the next section.

Definition 6 (Quantum smooth Re'nyi entropy, [5]): The E-
smooth Renyi entropy of order a e [0, 1) U (1, oc] of a density
matrix p is

Se, ( )_f infGBC(P) S.(0r), 0 < 0< 1,
a SUPRGBy3(p) SO'(o), 1< a < x.

Definition 7 (Entropy rates of a quantum source): For a
stationary quantum source p, given by its local densities
p(n) = PO,...,n-1, for n e N, we define:

S(p) lir S( (n oo n

s'a (p) = lim 1 a

We use the following notion of typical states and typical
subspaces, as can be found in [1] (also see [3]).

Definition 8 (Typical state, typical subspace): A pure state
le(n)), where (n) is an eigenvector of p(n) is called e-typicali i ~~~~~~~~(n)if the corresponding eigenvalue Ai satisfies

e- n (s(p)+e) < A(n) < e-n(s(p) -e)

The typical subspace TE(n) is the subspace spanned by all E-
typical states.
We will need the following consequences of the quantum

AEP for ergodic sources, which has been studied in [1] (see
[3] for the quantum AEP for i.i.d. sources).
Theorem 2 (Quantum AEP bounds): Let p be a stationary,

ergodic quantum source with local densities p(n). Let c > 0.
Then, for sufficiently large n,

tr(p(n)PT(.)) > I -e

where P(n) is the projector onto the subspace Se(n). Further-
more,

tr(P( n)) < (s (p)+e)
Clearly, the quantum AEP for ergodic sources implies the
classical AEP for ergodic sources.
The following theorem by Renner and Wolf states that

smooth Renyi entropy approaches Shannon entropy in the case
of a classical i.i.d. source.
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Theorem 3 ([7, Lemma I.2]): Let Zn denote an n-tuple of
i.i.d. random variables with probability distribution Pz. Then,

lim lim Ha (Zn) = H (Z),
eO0n -*oc n

for any a e [0, oo].
The analogous theorem by Renner and Konig for a quantum

i.i.d. source is as follows.
Theorem 4 ([5, Lemma 3]): Let p be a density matrix.

Then,

lim lim SC (p8 ) = S(p),
CeO n--Xoo n

for any a C [0, oo].

III. MAIN RESULT

We extend the results by Renner and Wolf (Theorem 3
above) and by Renner and Konig (Theorem 4 above) to the
case of ergodic sources. Throughout this section, we use
the notion of e-closeness based on non-normalized proba-
bility distributions and density matrices, so 13 (P) = {Q
Ez Q(z) > 1 c,VCzo < Q(z) < P(z)} and 136(p) =

{(X: tr(a) > 1 -, 0 < a < p}, respectively. In the next
section, we will argue that the results are independent on which
notion of e-closeness is used.

A. Classical Case

We start with our main result for the classical case. The
known result for an i.i.d. source is by Renner and Wolf,
Theorem 3 above. We will extend this to a stationary, ergodic
source in Theorem 5 below.
Lemma 1: Let P be a stationary, ergodic information source

given by its probability measure and let U < e < 1/2. Then
we have,

h(P)-E < hj (P) < h (P) + 2.
Proof: Let 0 < e < 1/2. To prove the lower bound, we

show that, for sufficiently large n, HoJ(Pn) > n(h(P) -E).
Define non-normalized probability distribution Q for all zn C
{0, i}n by

( n) { p(Zn), if Sn CZ(n )
T7(nl). (1)

Clearly, 0 < Q(zn) < p(zn) and, by the AEP, Q(ET(n))
P(7E(n)) > 1 - e for sufficiently large n. So, Q C

B3e(jpn). Furthermore, for Zn C 7S(n) we have that
log lp(zn) > n(h (P) -E), and hence that for any Zn that

-logQ(zn) > n(h(P) -E). This implies that Ho,((Q) =

-logmaxz Q(zn) > n(h(P) -E) and the lower bound
follows.

Next, to prove the upper bound, we show that, for suffi-
ciently large n, one has that for all Q C 13,(pn),

H,(Q) log max (Q(Zn) < n(h(P) + 2cE).

This follows from maxzn,(n) (Q(zn) > e-n(h(P)+2E), which

in turn follows from Zn-e(T) Q(zn) > 7(n e (h( )±)

From the AEP we get E <e-(_( )±e), hence it suffices
to prove that, for sufficiently large n,

(2)S (zn) > e ne-

n REn

As E ,Q(zn) > 1 - , for Q C Be(Ipn), and also

z, V(,) Q(zn) < c (because Q(zn) < jp(zn) and

P(Ten)) > 1 -e from the AEP), we only need to observe
that

1 -2E > e

holds for sufficiently large n, using that e < 1/2.
We now state an analogous lemma for the max-entropy.
Lemma 2: Let 1P be a stationary, ergodic information source

given by its probability measure and let 0 < e < 1/2. Then
we have,

h(P)- 2K< h(P) < h(P) +.
Proof: Let 0 < e < 1/2. To prove the upper bound, we

show that, for sufficiently large n, HO(Pn) < n(h(P) +,E). We
do so by showing that Ho(Q) = log {zn : Q(zn) > o} <
n(h (P) + e) for the non-normalized probability distribution Q,
defined by (1) in the proof of Lemma 1. As

{z : Q(Zn) > 0} {{Z C 7T(n) Q(Zn) > o}l < j-(n)

the result follows directly from the AEP.
Next, to prove the lower bound, we show that, for suffi-

ciently large n, one has that for all Q e (pn),

Ho(Q) = log {zn (Q(zn) > 0} > n(h(P)- 2E).
This is implied by {z' C T (6): Q(zn) > 0} > e'('< ) 2c)
which is in turn implied by

E: (Q(zn) >
n5(ncTi

max Q(zn)en(h(P)-2e)
n EE - (n ) @( Zn )> o

Using inequality (2) from the proof of Lemma 1, it suffices
to show that

max Q(zn) < e-ne- n(h(P)- 2e) e n(h(P) -e)
zn C (n) @(Zn )> O

This is a direct consequence of the definition of e-typical
sequences, as (Q(zn) < Ip(zn) for Q C 36(jlpn), using that
(Q(Zn) > 0 holds for at least one zn C 7E(n on account of
inequality (2). U

Theorem 5: For a C [0, oc], the e-smooth entropy of a
stationary, ergodic information source IP given by its proba-
bility measure on Z {0, 1} is close to the mean Shannon
entropy:

lim ho (P) = h (P).
Proof: For a < 1, the monotonicity of smooth Renyi

entropy (see, e.g., [7, Lemma 1]) yields Ho(pn) < Ho(pn),
and hence ho (P) < h(P) + e by Lemma 2.
To get a lower bound for ho (P), we note that

Ha (pn) > Ho2E(pn) _ log(1/e)c~~k} Ok) 1~a
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using [7, Lemma 2]. So, ho (P) > h`(P) as the constant term
on the right-hand side vanishes for n -* oc. Using Lemma 2,
we thus get h (P) > h(P) -4.

This proves that lime,O ho (P) = h (P). The proof for a > 1
is completely symmetrical, hence omitted. U

Note that the term 2E in the upper and lower bounds of
Lemmas 1 and 2, respectively, can be improved to (1 + 6)E
for any constant d > 0. Similarly, the term 4c in the proof of
Theorem 5 for the lower bound for ho can be improved to
(1 + 6)E for any constant d > 0.

B. Quantum Case

Although it is possible to prove the quantum case directly,
along the same lines as in the classical case, we treat the
quantum case indirectly, by reducing it to the classical case.
This leads to a more compact proof. To this end, we will
first prove Lemma 3 below, which captures the correspon-
dence between Be(p(n)) and Be(A(n)). We only consider the
case of e-closeness for non-normalized density matrices and
probability distributions (but the lemma also holds for the case
of e-closeness based on trace distance).
To prove our lemma, we need Weyl's monotonicity principle

which we recall first.
Theorem 6 (Weyl monotonicity): If A, B are m by m Her-

mitian matrices and B is positive, then Ai(A) < Ai(A + B)
for all i = 1,... ,m, where Ai(M) is the i-th eigenvalue of
M (ordered from largest to smallest).
Lemma 3: Let p be a density matrix with eigenvalues A1 >

A2 > ... > Am.
1) For any density matrix or with eigenvalues ,ui > P2 >

or C B6(p) , Be(A)

2) Given real numbers 1,.. p.m such that p. E Be(A),
there exists a matrix or with eigenvalues pi, . . . , p such
that or E B36(p).

Proof: We prove the result for
e (A)

e6(p)

{u:t(i > I-E,Vi0<pi <Ail,
i

{for: tr(of) > 1- 'E, < or < PI.
For the first part, let or be a (possibly non-normalized) density
matrix with eigenvalues p,i > p2 > ... > p.m and suppose
a- C B36(p). Since or is positive we have p.i > 0 for all i.
And since or < p, we have that p -o is positive as well,
so Ai > p.i for all i (using Weyl's monotonicity principle,
Theorem 6 above). Finally, note that tr(a7) > 1-e is equivalent
to pi.pi > 1-, so we conclude that p. C B6(A).

For the second part, let p. e B3'(A) be given. We write the
Hermitian matrix p in diagonal form,

p= Aivi)(vi-
for eigenvectors vi (i 1,... ,m), and we show that the
Hermitian matrix (7, defined by

a7 = E Vi),(Vi

is in B3(p).
Since p. C B36(A), we have that 0 < ,i < Ai, and because p

and or commute (eigenvalues of p -o are Ai- pi), we have
O < or < p. Clearly, Ei pi > 1-,e so tr(of) > 1-,e as well,
and therefore a e Be(p). U
We now proceed to prove the main result for the quantum

case.
Theorem 7: For a e [0, oc], the e-smooth entropy of

a stationary, ergodic quantum source p given by its local
densities p(n), for n e N, is close to the mean von Neumann
entropy:

limO SO (p) =s(p).
Proof: We will apply Theorem 5 as follows.

First note that for the local densities p(n) for a quantum
information source p, we have that S(p(n)) = H(A(n)), where
A(n) denotes the probability distribution corresponding to the
eigenvalues of p(n). Consequently, s (p) = h (A) as well, where
A denotes the probability distribution corresponding to the
eigenvalues of p.

Next, we recall the definitions of smooth Renyi entropy in
the classical and quantum case, resp.:

H (P)

Sa (p)

inf(QE 3 (p) Ho, ((Q) ~O <a< 1,
SUPEC3,(p) H,(Q), 1 < a <c.

|infu (p) S,j((J)T < a < l

l SUR5GE3 (p)SOa((a), I < a < xc.
We only consider the case a < 1, as the other case follows
by symmetry. We have that

SC (P(n) ) = inf SO ((J)
1,G]3c (p(n) )inf H (p.

=Hoc,(A(n)),

using that Lemma 3 implies that the infimum over B6 (p((n))
is equal to the infimum over B3(jA(n)).
As a consequence, we have that s' (p) = hV(A) and the

result follows from Theorem 5. Here, we use the fact that
quantum AEP implies classical AEP. A
We note that the actual convergence rate (as a function

of e) is the same as in the classical case, which follows by
considering the analogons of Lemmas 1 and 2.

IV. NOTIONS OF e-CLOSENESS

As mentioned in the introduction, two notions of e-closeness
were originally introduced by Renner and Wolf [6], [7], which
can both be used in the definition of classical smooth Renyi
entropy. For the quantum case, the paper by Renner and Konig
[5] only considers the notion of e-closeness based on the trace
distance. As the natural quantum analogon of the notion of
e-closeness based on non-normalized probability distributions,
we have used the set of non-normalized density matrices which
are e-close to a given density matrix p:

13'(p) = {fo: tr(or) > 1-c, 0 < or < p}.

259



ISIT2007, Nice, France, June 24 - June 29, 2007

The entropy rates (Definitions 3 and 7), and consequently
the results for these entropy rates (Theorems 3, 4, 5, and 7) do
not depend on which of these notions of e-closeness is used.

Furthermore, if the corresponding notions of e-closeness are
used, the quantum case and the classical case are in general
connected as follows:

SCX (p) = inf SOX, (or) = inf Ha() Ha (A),
where A denotes the probability distribution corresponding to
the eigenvalues of p.
We note, however, that the smooth Renyi entropy Ha may

depend on which notion of e-closeness is used, contrary to
what was stated before (see, e.g., Section 3.3 of the full version
of [6]). In general, one can show that

0 < inf Ho,(Q)- irnf Ho,(Q) a log(I ),
6 (P Q),E Z Q(Z)>1 a

Vz o<(z)<P(z)
for 0 < a < 1, and that

log( -e) < sup Ha(Q)- sup Ha(Q) < ,
a8- 1 6(Z,@) < ez (Z)> -e

V O<@(z)<P(Z)

for 1 < a < oc. So, only for a = 0 either notion of E-
closeness yields the same value for the smooth Renyi entropy
Ha. But for all other values of a, the difference may be as
large as

'Ol log(l -e). The maximum difference is attained
for the uniform distribution P(z) = 1/n on a finite range Z
of size m, assuming that e is sufficiently small (i.e., e < 1/m).
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