325 research outputs found

    Neutrinos in dense quark matter and cooling of compact stars

    Full text link
    We discuss that observational constraints on neutrino cooling processes may restrict the spectrum of quark matter phases admissible for compact star interiors.Comment: 3 pages, contribution to International School of Nuclear Physics on "Neutrinos in Cosmology, in Astro-, Particle- and Nuclear Physics, Erice-Sicily, September 16-24, 200

    Ionospheric response during low and high solar activity

    Get PDF
    We analyse solar extreme ultraviolet (EUV) irradiance observed by the Solar EUV Experiment (SEE) onboard the Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) satellite, and solar proxies (the F10.7 index, and Mg-II index), and compare their variability with the one of the global mean Total Electron Content (GTEC). Cross-wavelet analysis confirms the joint 27 days periodicity in GTEC and solar proxies. We focus on a comparison for solar minimum (2007-2009) and maximum (2013-2015) and find significant differences in the correlation during low and high solar activity years. GTEC is delayed by approximately 1-2 days in comparison to solar proxies during both low and high solar activity at the 27 days solar rotation period. To investigate the dynamics of the delay process, Coupled Thermosphere Ionosphere Plasmasphere electrodynamics model simulations have been performed for low and high solar activity conditions. Preliminary results using cross correlation analysis show an ionospheric delay of 1 day in GTEC with respect to the F10.7 index during low and high solar activity.Wir analysieren vom Solar Extreme Ultraviolet Experiment (SEE) an Bord des Thermosphere-Ionosphere-Mesosphere Energetics and Dynamics (TIMED) Satelliten gemessene solare EUV-Irradianzen, solare Proxies (den F10.7-Index und denMg-II-Index), und vergleichen deren VariabilitĂ€t mit derjenigen des global gemittelten Gesamtelektronengehalts (GTEC). Kreuzwaveletanalysen bestĂ€tigen eine gemeinsame VariabilitĂ€t im Periodenbereich der solaren Rotation (27 Tage). Wir vergleichen insbesondere den Zusammenhang wĂ€hrend des solaren Minimums (2007- 2009) und Maximums (2013-2015), wobei signifikante Unterschiede der Korrelation zwischen solaren und ionosphĂ€rischen Parametern auftreten. Es tritt eine Verzögerung der Maxima und Minima von GTEC gegenĂŒber denjenigen der solaren Proxies von einem Tag sowohl im solaren Minimum als auch im solaren Maximum auf

    Evaluating the performance of ionic liquid coatings for mitigation of spacecraft surface charges

    Full text link
    To reduce the impact of charging effects on satellites, cheap and lightweight conductive coatings are desirable. We mimic space-like charging environments in ultra-high vacuum (UHV) chambers during deposition of charges via the electron beam of a scanning electron microscope (SEM). We use the charge induced signatures in SEM images of a thin ionic liquid (IL) film on insulating surfaces such as glass, to assess the general performance of such coatings. In order to get a reference structure in SEM, the samples were structured by nanosphere lithography and coated with IL. The IL film (we choose BMP DCA, due to its beneficial physical properties) was applied ex situ and a thickness of 10 to 30 nm was determined by reflectometry. Such an IL film is stable under vacuum conditions. It would also only lead to additional mass of below 20 mg/m2^2. At about 5 A/m2≈3⋅1019^2 \approx 3\cdot10^{19} e/(s⋅\cdotm2^2), a typical sample charging rate in SEM, imaging is possible with no noticeable contrast changes over many hours; this electron current density is already 6 orders of magnitudes higher than "worst case geosynchronous environments" of 3⋅10−63\cdot10^{-6} A/m2^2. Measurements of the surface potential are used for further insights in the reaction of IL films to the electron beam of a SEM. Participating mechanisms such as polarization or reorientation will are discussed.Comment: Submitted to Proceedings of the 14th IAA Symposium on Small Satellites for Earth System Observatio

    The response of the ionospheric peak electron density (NmF2) to solar activity)

    Get PDF
    The ionospheric peak electron density NmF2, simulated with the Coupled Thermosphere Ionosphere Plasmasphere electrodynamics (CTIPe) model was used to study the ionospheric response to solar flux in years of low (2008) and high (2013) solar activity. The CTIPe NmF2 was compared to the Whole Atmosphere Community Climate Model with Thermosphere and Ionosphere Extension (WACCM-X) and the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) NmF2 in March and July of 2008 and 2013. The comparison shows that the CTIPe NmF2 is lower than the COSMIC andWACCM-X NmF2. Both models successfully reproduce the semi-annual variations seen in the COSMIC observations. Analysis of the 27-day variations of the CTIPe NmF2 shows that the midnight NmF2 deviations are stronger than the midday deviations. In addition, at low solar activity, the 27-day variations of NmF2 are larger in the Southern Hemisphere, while at high solar activity, the 27-day variations of NmF2 are larger at the equator and in the Northern Hemisphere. An ionospheric delay was estimated with CTIPe simulated NmF2 at the 27-day solar rotation period during low and high solar activity. During low (high) solar activity, an ionospheric delay of about 12 (34) hours is predicted indicating an increasing ionospheric delay with solar activity.Die maximale ionosphĂ€rische Elektronendichte NmF2, die mit dem Coupled Thermosphere Ionosphere Plasmasphere electrodynamics (CTIPe) Modell simuliert wurde, wurde zur Untersuchung der ionosphĂ€rischen Reaktion in Jahren mit geringer (2008) und hoher (2013) SonnenaktivitĂ€t verwendet. CTIPe vorhergesagte NmF2 wurde mit derjenigen des Whole Atmosphere Community Climate Model with Thermosphere and Ionosphere Extension (WACCM-X) und Messwerten des Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) im MĂ€rz und Juli der Jahre 2008 und 2013 verglichen. Der Vergleich zeigt, dass NmF2 aus CTIPe geringer ist als das COSMIC gemessene und von WACCM-X simulierte. Beide Modelle reproduzieren erfolgreich die von COSMIC beobachteten halbjĂ€hrlichen Schwankungen. Die Analyse der 27-tĂ€gigen Schwankungen des CTIPe NmF2 zeigt, dass die mitternĂ€chtlichen NMF2-Abweichungen stĂ€rker sind als diejenigen am Mittag. Außerdem sind bei geringer SonnenaktivitĂ€t die 27-Tage-Abweichungen von NmF2 in der SĂŒdhemisphĂ€re grĂ¶ĂŸer, wĂ€hrend bei hoher SonnenaktivitĂ€t die 27-Tage-Abweichungen von NmF2 am Äquator und in der NordhemisphĂ€re grĂ¶ĂŸer sind. Die ionosphĂ€rische Verzögerung wĂ€hrend geringer und hoher SonnenaktivitĂ€t wurde fĂŒr die 27-tĂ€gige Sonnenrotation mit CTIPe simuliert. Bei geringer (hoher) SonnenaktivitĂ€t wird eine ionosphĂ€rische Verzögerung von etwa 12 (34) Stunden beobachtet, was auf eine zunehmende ionosphĂ€rische Verzögerung mit zunehmender SonnenaktivitĂ€t hinweist
    • 

    corecore