2,560 research outputs found
An Iterative Model Reduction Scheme for Quadratic-Bilinear Descriptor Systems with an Application to Navier-Stokes Equations
We discuss model reduction for a particular class of quadratic-bilinear (QB)
descriptor systems. The main goal of this article is to extend the recently
studied interpolation-based optimal model reduction framework for QBODEs
[Benner et al. '16] to a class of descriptor systems in an efficient and
reliable way. Recently, it has been shown in the case of linear or bilinear
systems that a direct extension of interpolation-based model reduction
techniques to descriptor systems, without any modifications, may lead to poor
reduced-order systems. Therefore, for the analysis, we aim at transforming the
considered QB descriptor system into an equivalent QBODE system by means of
projectors for which standard model reduction techniques for QBODEs can be
employed, including aforementioned interpolation scheme. Subsequently, we
discuss related computational issues, thus resulting in a modified algorithm
that allows us to construct \emph{near}--optimal reduced-order systems without
explicitly computing the projectors used in the analysis. The efficiency of the
proposed algorithm is illustrated by means of a numerical example, obtained via
semi-discretization of the Navier-Stokes equations
Accelerating BST Methods for Model Reduction with Graphics Processors
Model order reduction of dynamical linear time-invariant system appears in many scientific and engineering applications. Numerically reliable SVD-based methods for this task require O(n3) floating-point arithmetic operations, with n being in the range 103 − 105 for many practical applications. In this paper we investigate the use of graphics processors (GPUs) to accelerate model reduction of large-scale linear systems via Balanced Stochastic Truncation, by off-loading the computationally intensive tasks to this device. Experiments on a hybrid platform consisting of state-of-the-art general-purpose multi-core processors and a GPU illustrate the potential of this approach
An accurate measurement of electron beam induced displacement cross sections for single-layer graphene
We present an accurate measurement and a quantitative analysis of
electron-beam induced displacements of carbon atoms in single-layer graphene.
We directly measure the atomic displacement ("knock-on") cross section by
counting the lost atoms as a function of the electron beam energy and applied
dose. Further, we separate knock-on damage (originating from the collision of
the beam electrons with the nucleus of the target atom) from other radiation
damage mechanisms (e.g. ionization damage or chemical etching) by the
comparison of ordinary (12C) and heavy (13C) graphene. Our analysis shows that
a static lattice approximation is not sufficient to describe knock-on damage in
this material, while a very good agreement between calculated and experimental
cross sections is obtained if lattice vibrations are taken into account.Comment: 10 pages including supplementary inf
Electron-hole correlation effects in the emission of light from quantum wires
We present a self-consistent treatment of the electron-hole correlations in
optically excited quantum wires within the ladder approximation, and using a
contact potential interaction. The limitations of the ladder approximation to
the excitonic low-density region are largely overcome by the introduction of
higher order correlations through self consistency. We show relevance of these
correlations in the low-temperature emission, even for high density relevant in
lasing, when large gain replaces excitonic absorption.Comment: 4 paes 3 figure
Project Management in Libraries: LIS2971 Summer Course
The growth of projects in libraries is pervasive. This short 1-credit course introduces LIS students to the discipline of project management in a hands-on way, so that they can begin applying project management methods immediately
The pursuit of isotopic and molecular fire tracers in the polar atmosphere and cryosphere
We present an overview of recent multidisciplinary, multi-institutional efforts to identify and date major sources of combustion aerosol in the current and paleoatmospheres. The work was stimulated, in part, by an atmospheric particle \u27sample of opportunity\u27 collected at Summit, Greenland in August 1994, that bore the 14C imprint of biomass burning. During the summer field seasons of 1995 and 1996, we collected air filter, surface snow and snowpit samples to investigate chemical and isotopic evidence of combustion particles that had been transported from distant fires. Among the chemical tracers employed for source identification are organic acids, potassium and ammonium ions, and elemental and organic components of carbonaceous particles. Ion chromatography, performed by members of the Climate Change Research Center (University of New Hampshire), has been especially valuable in indicating periods at Summit that were likely to have been affected by the long range transport of biomass burning aerosol. Univariate and multivariate patterns of the ion concentrations in the snow and ice pinpointed surface and snowpit samples for the direct analysis of particulate (soot) carbon and carbon isotopes. The research at NIST is focusing on graphitic and polycyclic aromatic carbon, which serve as almost certain indicators of fire, and measurements of carbon isotopes, especially 14C, to distinguish fossil and biomass combustion sources. Complementing the chemical and isotopic record, are direct \u27visual\u27 (satellite imagery) records and less direct backtrajectory records, to indicate geographic source regions and transport paths. In this paper we illustrate the unique way in which the synthesis of the chemical, isotopic, satellite and trajectory data enhances our ability to develop the recent history of the formation and transport of soot deposited in the polar snow and ice
- …